llama-graph.h 27.2 KB
Newer Older
1
2
3
#pragma once

#include "llama-arch.h"
4
#include "llama-batch.h"
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include "llama-hparams.h"
#include "llama-adapter.h"

#include <cstdint>
#include <vector>
#include <memory>
#include <set>
#include <functional>

struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;

struct llama_cparams;

20
21
struct llama_memory_context_i;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
22
23
class llama_kv_cache_context;
class llama_kv_cache_iswa_context;
24
25
class llama_memory_recurrent_context;
class llama_memory_hybrid_context;
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
    LLM_GRAPH_TYPE_DEFAULT,
    LLM_GRAPH_TYPE_ENCODER,
    LLM_GRAPH_TYPE_DECODER,
};

enum llm_ffn_op_type {
    LLM_FFN_SILU,
    LLM_FFN_GELU,
    LLM_FFN_RELU,
    LLM_FFN_RELU_SQR,
    LLM_FFN_SWIGLU,
40
41
42
    LLM_FFN_GEGLU,
    LLM_FFN_REGLU,
    LLM_FFN_SWIGLU_OAI_MOE,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
};

enum llm_ffn_gate_type {
    LLM_FFN_SEQ,
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
    LLM_NORM_GROUP,
};

// TODO: tmp - need something better to pass the data from the encoder to the decoder
struct llama_cross {
    // the output embeddings from the encoder as a ggml tensor
    // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
    //       ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
    //ggml_tensor * t_embd = nullptr;

    int64_t n_embd = 0;
    int64_t n_enc  = 0;

    // embeddings data copied to host memory (tmp)
    std::vector<float> v_embd;

    // needed to construct the cross-attention mask in the decoder
    std::vector<std::set<llama_seq_id>> seq_ids_enc;
};

73
74
struct llm_graph_params;

75
76
77
78
79
80
//
// llm_graph_input
//

class llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
81
82
83
84
85
    llm_graph_input_i() {
        const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
        debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
    }

86
87
88
    virtual ~llm_graph_input_i() = default;

    virtual void set_input(const llama_ubatch * ubatch) = 0;
89
90
91
92
93
94
95
96
97

    // return true if the resulting input tensors using the provided graph parameters would be
    //   the same as the previous input tensors that we have currently stored in the object
    virtual bool can_reuse(const llm_graph_params & params) {
        // returning false here by default will prevent from reusing the graph if the check
        //   for the input type has not been implemented yet
        GGML_UNUSED(params);
        return false;
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
98
99
100
protected:
    // env: LLAMA_GRAPH_INPUT_DEBUG
    int debug = 0;
101
102
103
104
105
106
107
108
109
110
111
};

using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;

class llm_graph_input_embd : public llm_graph_input_i {
public:
    llm_graph_input_embd()          = default;
    virtual ~llm_graph_input_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

112
113
    bool can_reuse(const llm_graph_params & params) override;

114
115
116
117
118
119
    ggml_tensor * tokens = nullptr; // I32 [n_batch]
    ggml_tensor * embd   = nullptr; // F32 [n_embd, n_batch]
};

class llm_graph_input_pos : public llm_graph_input_i {
public:
120
    llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
121
122
123
124
    virtual ~llm_graph_input_pos() = default;

    void set_input(const llama_ubatch * ubatch) override;

125
126
    bool can_reuse(const llm_graph_params & params) override;

127
128
    ggml_tensor * pos = nullptr; // I32 [n_batch]

129
    const uint32_t n_pos_per_embd = 1;
130
131
132
133
134
};

// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
135
136
    llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
        : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    virtual ~llm_graph_input_attn_temp() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * attn_scale = nullptr; // F32 [n_batch]

    const uint32_t n_attn_temp_floor_scale;
    const float    f_attn_temp_scale;
};

class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
    virtual ~llm_graph_input_pos_bucket() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]

156
    const llama_hparams hparams;
157
158
159
160
161
162
};

class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket_kv(
            const llama_hparams & hparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
163
            const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
164
165
166
167
168
169
    virtual ~llm_graph_input_pos_bucket_kv() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]

170
171
    const llama_hparams hparams;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
172
    const llama_kv_cache_context * mctx;
173
174
175
176
177
178
179
};

class llm_graph_input_out_ids : public llm_graph_input_i {
public:
    llm_graph_input_out_ids(
            const llama_hparams & hparams,
            const llama_cparams & cparams,
180
            uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
181
182
183
184
    virtual ~llm_graph_input_out_ids() = default;

    void set_input(const llama_ubatch * ubatch) override;

185
186
    bool can_reuse(const llm_graph_params & params) override;

187
188
    ggml_tensor * out_ids; // I32 [n_outputs]

189
190
    const llama_hparams hparams;
    const llama_cparams cparams;
191

192
    const uint32_t n_outputs;
193
194
195
196
197
198
199
200
201
202
203
};

class llm_graph_input_mean : public llm_graph_input_i {
public:
    llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
    virtual ~llm_graph_input_mean() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * mean; // F32 [n_batch, n_batch]

204
    const llama_cparams cparams;
205
206
207
208
};

class llm_graph_input_cls : public llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
209
    llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
210
211
212
213
214
215
    virtual ~llm_graph_input_cls() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cls; // I32 [n_batch]

216
    const llama_cparams cparams;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
217
    const llm_arch arch;
218
219
};

220
class llm_graph_input_rs : public llm_graph_input_i {
221
public:
222
223
    llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
    virtual ~llm_graph_input_rs() = default;
224
225
226

    void set_input(const llama_ubatch * ubatch) override;

227
    ggml_tensor * s_copy;  // I32 [n_rs]
228

229
230
231
232
    // views of s_copy, computed once per graph
    // and shared across layers which use build_rs
    ggml_tensor * s_copy_main;   // I32 [n_seqs]
    ggml_tensor * s_copy_extra;  // I32 [n_rs - n_seqs]
233

234
    const llama_memory_recurrent_context * mctx;
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
};

class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
    llm_graph_input_cross_embd(
            const llama_cross * cross) : cross(cross) {}
    virtual ~llm_graph_input_cross_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]

    const llama_cross * cross;
};

class llm_graph_input_attn_no_cache : public llm_graph_input_i {
public:
    llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
        hparams(hparams),
        cparams(cparams) {
    }
    ~llm_graph_input_attn_no_cache() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }

262
263
    ggml_tensor * kq_mask     = nullptr; // F32 [n_tokens, n_batch, 1, 1]
    ggml_tensor * kq_mask_cnv = nullptr; //     [n_tokens, n_batch, 1, 1]
264

265
266
    const llama_hparams hparams;
    const llama_cparams cparams;
267
268
};

Daniel Hiltgen's avatar
Daniel Hiltgen committed
269
class llm_graph_input_attn_kv : public llm_graph_input_i {
270
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
271
    llm_graph_input_attn_kv(
272
273
            const llama_hparams & hparams,
            const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274
            const llama_kv_cache_context * mctx) :
275
276
        hparams(hparams),
        cparams(cparams),
277
        mctx(mctx) {
278
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
279
    ~llm_graph_input_attn_kv() = default;
280
281
282

    void set_input(const llama_ubatch * ubatch) override;

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    bool can_reuse(const llm_graph_params & params) override;

    ggml_tensor * get_k_idxs() const { return self_k_idxs; }
    ggml_tensor * get_v_idxs() const { return self_v_idxs; }

    ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }

    ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]

    ggml_tensor * self_kq_mask     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]

    // note: these have to be copies because in order to be able to reuse a graph, its inputs
    //       need to carry these parameters with them. otherwise, they can point to freed
    //       llm_graph_params from a previous batch, causing stack-use-after-return
    const llama_hparams hparams;
    const llama_cparams cparams;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
302
    const llama_kv_cache_context * mctx;
303
304
};

Daniel Hiltgen's avatar
Daniel Hiltgen committed
305
class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
306
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
307
    llm_graph_input_attn_kv_iswa(
308
309
            const llama_hparams & hparams,
            const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
310
            const llama_kv_cache_iswa_context * mctx) :
311
312
313
314
        hparams(hparams),
        cparams(cparams),
        mctx(mctx) {
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
315
    ~llm_graph_input_attn_kv_iswa() = default;
316
317
318
319
320
321
322
323
324
325

    void set_input(const llama_ubatch * ubatch) override;

    bool can_reuse(const llm_graph_params & params) override;

    ggml_tensor * get_k_idxs()     const { return self_k_idxs; }
    ggml_tensor * get_v_idxs()     const { return self_v_idxs; }
    ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
    ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }

326
327
328
    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }

329
330
331
332
    ggml_tensor * self_k_idxs     = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs     = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
    ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
333

334
335
336
337
338
339
340
    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]

    const llama_hparams hparams;
    const llama_cparams cparams;
341

Daniel Hiltgen's avatar
Daniel Hiltgen committed
342
    const llama_kv_cache_iswa_context * mctx;
343
344
345
346
347
348
349
350
351
352
353
};

class llm_graph_input_attn_cross : public llm_graph_input_i {
public:
    llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
    ~llm_graph_input_attn_cross() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }

354
355
    ggml_tensor * cross_kq_mask     = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
    ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
356
357
358
359

    const llama_cross * cross = nullptr;
};

360
361
362
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
public:
    llm_graph_input_mem_hybrid(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
363
            std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
364
365
366
367
368
369
370
371
372
            std::unique_ptr<llm_graph_input_rs>              inp_rs,
            const llama_memory_hybrid_context *              mctx) :
        inp_attn(std::move(inp_attn)),
        inp_rs(std::move(inp_rs)),
        mctx(mctx) { }
    virtual ~llm_graph_input_mem_hybrid() = default;

    void set_input(const llama_ubatch * ubatch) override;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
373
374
    std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
    std::unique_ptr<llm_graph_input_rs>      inp_rs;
375

Daniel Hiltgen's avatar
Daniel Hiltgen committed
376
377
    llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
    llm_graph_input_rs      * get_recr() const { return inp_rs.get(); }
378
379
380
381

    const llama_memory_hybrid_context * mctx;
};

382
383
384
385
386
387
388
389
390
391
//
// llm_graph_result
//

// these objects deliver the result from the graph build process back to the llama_context
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
//   specific data, by calling the set_inputs() method
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
//   these are used by the llama_context to extact the relevant data, based on the compute parameters

392
393
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
394

395
class llm_graph_result;
396

397
398
struct llm_graph_params {
    llm_arch arch = LLM_ARCH_UNKNOWN;
399

400
401
    llama_hparams hparams;
    llama_cparams cparams;
402

403
    llama_ubatch ubatch; // note: intentionally make a copy
404

405
    llm_graph_type gtype;
406

407
408
    ggml_backend_sched_t sched;
    ggml_backend_t backend_cpu;
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;

    uint32_t n_outputs;

    llm_graph_cb cb;

    llm_graph_result * res;

    // return true if the "other" params would result in a graph with the same topology as with the current params
    //   having the same topology allows us to reuse the graph in some cases
    bool allow_reuse(const llm_graph_params & other) const {
        // first check the ubatch
        bool can_reuse_ubatch =
            ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
            ubatch.n_tokens     == other.ubatch.n_tokens &&
            ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
            ubatch.n_seqs       == other.ubatch.n_seqs &&
            ubatch.n_seqs_unq   == other.ubatch.n_seqs_unq &&
            (
                (!ubatch.token && !other.ubatch.token) ||
                (!ubatch.embd  && !other.ubatch.embd)
            );

        // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
        //   the reason is because the set of attention streams would be different for different sequences
        if (can_reuse_ubatch && ubatch.equal_seqs()) {
            if (!ubatch.data) {
                // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
                //   therefore we cannot perform the sequence id check. normally should never happen
                can_reuse_ubatch = false;
            } else {
                for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
                    can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
                }
            }
448
449
        }

450
451
452
453
454
455
456
457
458
459
460
461
462
        if (!can_reuse_ubatch) {
            return false;
        }

        return
            cparams.embeddings  == other.cparams.embeddings  &&
            cparams.causal_attn == other.cparams.causal_attn &&
            arch      == other.arch  &&
            gtype     == other.gtype &&
            cvec      == other.cvec  &&
            loras     == other.loras &&
            cross     == other.cross &&
            n_outputs == other.n_outputs;
463
    }
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
};

class llm_graph_result {
public:
    llm_graph_result(int64_t max_nodes);

    virtual ~llm_graph_result() = default;

    ggml_tensor * get_tokens()      const { return t_tokens; }
    ggml_tensor * get_logits()      const { return t_logits; }
    ggml_tensor * get_embd()        const { return t_embd; }
    ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }

    ggml_cgraph  * get_gf()  const { return gf; }
    ggml_context * get_ctx() const { return ctx_compute.get(); }

    int64_t get_max_nodes() const;

    void reset();

    void set_inputs(const llama_ubatch * ubatch);

    // try to update the existing graph result using the new graph parameters in order to reuse it
    // this can only be done if we determine that the resulting graph using the new graph parameters
    //   would be identical to the existing graph. in that case, we simply have to update the memory
    //   contexts of the input tensors of the graph and we can reuse it for another computation
    // return true if the graph was updated and can be reused
    bool can_reuse(const llm_graph_params & params);

    llm_graph_input_i * add_input(llm_graph_input_ptr input);

    void set_params(const llm_graph_params & params);
496
497

    // important graph nodes
498
    ggml_tensor * t_tokens      = nullptr;
499
500
501
502
503
504
    ggml_tensor * t_logits      = nullptr;
    ggml_tensor * t_embd        = nullptr;
    ggml_tensor * t_embd_pooled = nullptr;

    std::vector<llm_graph_input_ptr> inputs;

505
    ggml_context_ptr ctx_compute;
506

507
508
    // memory buffers used to evaluate the model
    std::vector<uint8_t> buf_compute_meta;
509

510
    ggml_cgraph * gf;
511

512
    int64_t max_nodes;
513

514
515
516
517
518
private:
    // keep a copy of the previous graph parameters
    // we will use this to determine whether the graph can be reused by comparing them with the new parameters
    // note: these are updated after constructing the new graph
    llm_graph_params params;
519

520
521
522
    // env: LLAMA_GRAPH_RESULT_DEBUG
    int debug = 0;
};
523

524
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
525

526
527
528
//
// llm_graph_context
//
529

530
531
// used in build_rs to properly order writes and avoid unnecessary copies
using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

struct llm_graph_context {
    const llm_arch arch;

    const llama_hparams & hparams;
    const llama_cparams & cparams;
    const llama_ubatch  & ubatch;

    const int64_t n_embd;
    const int64_t n_layer;
    const int64_t n_rot;
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
    const int64_t n_head;
    const int64_t n_head_kv;
    const int64_t n_embd_head_k;
    const int64_t n_embd_k_gqa;
    const int64_t n_embd_head_v;
    const int64_t n_embd_v_gqa;
    const int64_t n_expert;
    const int64_t n_expert_used;

    const float freq_base;
    const float freq_scale;
    const float ext_factor;
    const float attn_factor;
    const float beta_fast;
    const float beta_slow;
    const float norm_eps;
    const float norm_rms_eps;

562
563
    const int64_t n_tokens;
    const int64_t n_outputs;
564
565
566
567
568
    const int32_t n_ctx_orig; // yarn

    const enum llama_pooling_type pooling_type;
    const enum llama_rope_type    rope_type;

569
    ggml_backend_sched_t sched;
570

571
    ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
572

573
574
575
576
    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;
577
578
579

    const llm_graph_cb & cb_func;

580
    llm_graph_result * res;
581

582
583
    ggml_context * ctx0 = nullptr;
    ggml_cgraph  * gf   = nullptr;
584

585
586
    llm_graph_context(const llm_graph_params & params);
    virtual ~llm_graph_context() = default;
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

    void cb(ggml_tensor * cur, const char * name, int il) const;

    //
    // common
    //

    ggml_tensor * build_cvec(
             ggml_tensor * cur,
                     int   il) const;

    // do mat_mul, while optionally apply lora
    ggml_tensor * build_lora_mm(
              ggml_tensor * w,
              ggml_tensor * cur) const;

    // do mat_mul_id, while optionally apply lora
    ggml_tensor * build_lora_mm_id(
              ggml_tensor * w,   // ggml_tensor * as
              ggml_tensor * cur, // ggml_tensor * b
              ggml_tensor * ids) const;

    ggml_tensor * build_norm(
             ggml_tensor * cur,
             ggml_tensor * mw,
             ggml_tensor * mb,
           llm_norm_type   type,
                     int   il) const;

    ggml_tensor * build_ffn(
             ggml_tensor * cur,
             ggml_tensor * up,
             ggml_tensor * up_b,
             ggml_tensor * up_s,
             ggml_tensor * gate,
             ggml_tensor * gate_b,
             ggml_tensor * gate_s,
             ggml_tensor * down,
             ggml_tensor * down_b,
             ggml_tensor * down_s,
             ggml_tensor * act_scales,
         llm_ffn_op_type   type_op,
       llm_ffn_gate_type   type_gate,
                     int   il) const;

632
    // build MoE FFN without bias tensors
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    ggml_tensor * build_moe_ffn(
             ggml_tensor * cur,
             ggml_tensor * gate_inp,
             ggml_tensor * up_exps,
             ggml_tensor * gate_exps,
             ggml_tensor * down_exps,
             ggml_tensor * exp_probs_b,
                 int64_t   n_expert,
                 int64_t   n_expert_used,
         llm_ffn_op_type   type_op,
                    bool   norm_w,
                    bool   scale_w,
                   float   w_scale,
            llama_expert_gating_func_type gating_op,
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
                     int   il,
             ggml_tensor * probs_in = nullptr) const;

    ggml_tensor * build_moe_ffn(
             ggml_tensor * cur,
             ggml_tensor * gate_inp,
             ggml_tensor * gate_inp_b,
             ggml_tensor * up_exps,
             ggml_tensor * up_exps_b,
             ggml_tensor * gate_exps,
             ggml_tensor * gate_exps_b,
             ggml_tensor * down_exps,
             ggml_tensor * down_exps_b,
             ggml_tensor * exp_probs_b,
                 int64_t   n_expert,
                 int64_t   n_expert_used,
         llm_ffn_op_type   type_op,
                    bool   norm_w,
                    bool   scale_w,
                   float   w_scale,
            llama_expert_gating_func_type gating_op,
                     int   il,
             ggml_tensor * probs_in = nullptr) const;
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

    //
    // inputs
    //

    ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
    ggml_tensor * build_inp_pos() const;
    ggml_tensor * build_inp_attn_scale() const;
    ggml_tensor * build_inp_out_ids() const;
    ggml_tensor * build_inp_mean() const;
    ggml_tensor * build_inp_cls() const;

    ggml_tensor * build_inp_cross_embd() const;
    ggml_tensor * build_inp_pos_bucket_enc() const;
    ggml_tensor * build_inp_pos_bucket_dec() const;
    ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;

    //
    // attention
    //

    ggml_tensor * build_attn_mha(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
692
693
694
695
696
697
698
699
700
            ggml_tensor * q,       // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k,       // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v,       // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
            ggml_tensor * kq_b,
            ggml_tensor * kq_mask,
            ggml_tensor * sinks,   // [n_head_q]
            ggml_tensor * v_mla,   // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;
701
702
703
704
705
706
707
708
709
710
711

    llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_no_cache * inp,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
712
            ggml_tensor * sinks, // [n_head_q]
713
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
714
715
716
                  float   kq_scale,
                    int   il) const;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
717
    llm_graph_input_attn_kv * build_attn_inp_kv() const;
718
719

    ggml_tensor * build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
720
            llm_graph_input_attn_kv * inp,
721
722
723
724
725
726
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
727
            ggml_tensor * sinks, // [n_head_q]
728
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
729
730
731
                  float   kq_scale,
                    int   il) const;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
732
    llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
733
734
735

    // note: if k_cur or v_cur are not provided, they will not be stored in the memory
    ggml_tensor * build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
736
            llm_graph_input_attn_kv_iswa * inp,
737
738
739
740
741
742
743
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
            ggml_tensor * kq_b,
            ggml_tensor * sinks, // [n_head_q]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
744
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
745
746
747
                  float   kq_scale,
                    int   il) const;

748
749
750
751
752
753
754
755
756
757
    llm_graph_input_attn_cross * build_attn_inp_cross() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_cross * inp,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
758
            ggml_tensor * sinks, // [n_head_q]
759
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
760
761
762
763
764
765
766
                  float   kq_scale,
                    int   il) const;

    //
    // recurrent
    //

767
    // TODO: move this implementation to llama_memory_recurrent.
Daniel Hiltgen's avatar
Daniel Hiltgen committed
768
    //       this is analogous to llama_kv_cache::cpy_k / cpy_v
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
    //       when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
    //         implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
    //         `llama_memory_recurrent`
    ggml_tensor * build_rs(
            ggml_tensor * s,
            ggml_tensor * state_copy_main,
            ggml_tensor * state_copy_extra,
                int32_t   state_size,
                int32_t   n_seqs,
               uint32_t   n_rs,
               uint32_t   rs_head,
               uint32_t   rs_size,
                int32_t   rs_zero,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;

    llm_graph_input_rs * build_rs_inp() const;

    ggml_tensor * build_rs(
            llm_graph_input_rs * inp,
            ggml_tensor * s,
                int32_t   state_size,
                int32_t   n_seqs,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
792
793

    ggml_tensor * build_rwkv_token_shift_load(
794
795
796
        llm_graph_input_rs * inp,
        const llama_ubatch & ubatch,
                       int   il) const;
797
798
799
800
801

    ggml_tensor * build_rwkv_token_shift_store(
             ggml_tensor * token_shift,
      const llama_ubatch & ubatch,
                     int   il) const;
802
803
804
805
806
    //
    // hybrid
    //

    llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
807
808
809
810
811
812
813
814
815
816

    //
    // pooling
    //

    void build_pooling(
            ggml_tensor * cls,
            ggml_tensor * cls_b,
            ggml_tensor * cls_out,
            ggml_tensor * cls_out_b) const;
817
818
819
820
821
822
823
824

    //
    // dense (out)
    //

    void build_dense_out(
            ggml_tensor * dense_2,
            ggml_tensor * dense_3) const;
825
};
826
827
828

// TODO: better name
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);