model_text.go 7.03 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
6
7
8
9
package gemma3

import (
	"math"

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
Michael Yang's avatar
Michael Yang committed
10
	"github.com/ollama/ollama/model/input"
Patrick Devine's avatar
Patrick Devine committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
)

type TextOptions struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeScale                   float32
	ropeLocalBase, ropeGlobalBase    float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type TextModel struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []TextLayer   `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

const (
Patrick Devine's avatar
Patrick Devine committed
35
36
	gemmaGlobalCacheCount = 6
	gemma27BLayerCount    = 46
Patrick Devine's avatar
Patrick Devine committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
)

const (
	cacheTypeSWA = iota
	cacheTypeCausal
)

func newTextModel(c ml.Config) *TextModel {
	m := TextModel{
		SentencePieceModel: model.NewSentencePieceModel(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
			},
		),
		Layers: make([]TextLayer, c.Uint("block_count")),
		TextOptions: &TextOptions{
			hiddenSize:        int(c.Uint("embedding_length")),
Patrick Devine's avatar
Patrick Devine committed
59
60
61
62
63
			numHeads:          int(c.Uint("attention.head_count", 8)),
			numKVHeads:        int(c.Uint("attention.head_count_kv", 4)),
			attnKeyLen:        int(c.Uint("attention.key_length", 256)),
			attnValLen:        int(c.Uint("attention.value_length", 256)),
			eps:               c.Float("text.attention.layer_norm_rms_epsilon", 1e-06),
Patrick Devine's avatar
Patrick Devine committed
64
65
66
			ropeLocalBase:     c.Float("text.rope.local.freq_base", 10000.0),
			ropeGlobalBase:    c.Float("text.rope.global.freq_base", 1000000.0),
			ropeScale:         c.Float("text.rope.freq_scale", 1.0),
Patrick Devine's avatar
Patrick Devine committed
67
			finalLogitSoftcap: c.Float("text.final_logit_softcapping", 30.0),
Patrick Devine's avatar
Patrick Devine committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
		},
	}

	return &m
}

type TextSelfAttention struct {
	Query     *nn.Linear  `gguf:"attn_q"`
	QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
	Key       *nn.Linear  `gguf:"attn_k"`
	KeyNorm   *nn.RMSNorm `gguf:"attn_k_norm"`
	Value     *nn.Linear  `gguf:"attn_v"`
	Output    *nn.Linear  `gguf:"attn_output"`
}

func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(2)

	ropeBase := opts.ropeLocalBase
Patrick Devine's avatar
Patrick Devine committed
88
	if (layer+1)%gemmaGlobalCacheCount == 0 {
Patrick Devine's avatar
Patrick Devine committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
		ropeBase = opts.ropeGlobalBase
	}

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
	q = sa.QueryNorm.Forward(ctx, q, opts.eps)
	q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)

	if opts.largeModelScaling {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
	k = sa.KeyNorm.Forward(ctx, k, opts.eps)
	k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	scaleFactor := 1.0
	kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	ropeBase := m.TextOptions.ropeLocalBase
Patrick Devine's avatar
Patrick Devine committed
120
	if (layer+1)%gemmaGlobalCacheCount == 0 {
Patrick Devine's avatar
Patrick Devine committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
		ropeBase = m.TextOptions.ropeGlobalBase
	}

	return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
}

type TextMLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type TextLayer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *TextSelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *TextMLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

Jesse Gross's avatar
Jesse Gross committed
147
func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
Patrick Devine's avatar
Patrick Devine committed
148
149
150
151
152
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
Jesse Gross's avatar
Jesse Gross committed
153
154
155
156
157
158
159
160

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Patrick Devine's avatar
Patrick Devine committed
161
162
163
164
165
166
167
168
169
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

Michael Yang's avatar
Michael Yang committed
170
171
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, multimodal []input.MultimodalIndex, cache kvcache.Cache) ml.Tensor {
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
Michael Yang's avatar
Michael Yang committed
172
173
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))

Michael Yang's avatar
Michael Yang committed
174
175
176
177
	if multimodal != nil {
		visionOutputs := multimodal[0].Multimodal.(ml.Tensor)
		offset := multimodal[0].Index - 1 - visionOutputs.Dim(1)
		hiddenState = hiddenState.Set(ctx, visionOutputs, offset*hiddenState.Stride(0))
Michael Yang's avatar
Michael Yang committed
178
179
	}

Patrick Devine's avatar
Patrick Devine committed
180
181
182
183
184
185
186
187
	if len(m.Layers) == gemma27BLayerCount {
		m.TextOptions.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		// gemma alternates between the sliding window (local) and causal (global)
		// kv cache every 6 layers
		cacheType := cacheTypeSWA
Patrick Devine's avatar
Patrick Devine committed
188
		if (i+1)%gemmaGlobalCacheCount == 0 {
Patrick Devine's avatar
Patrick Devine committed
189
190
191
192
193
			cacheType = cacheTypeCausal
		}
		cache.SetLayer(i)
		wc := cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
Jesse Gross's avatar
Jesse Gross committed
194
195
196
197
198
199
200

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
Patrick Devine's avatar
Patrick Devine committed
201
202
203
204
205
206
207
208
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.TextOptions.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
Jesse Gross's avatar
Jesse Gross committed
209
	return hiddenState.Scale(ctx, float64(m.TextOptions.finalLogitSoftcap))
Patrick Devine's avatar
Patrick Devine committed
210
}