binding.cpp 21.9 KB
Newer Older
Jeffrey Morgan's avatar
Jeffrey Morgan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include "common.h"
#include "llama.h"

#include "binding.h"

#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <signal.h>
#include <windows.h>
#endif

#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) ||          \
    defined(_WIN32)
void sigint_handler(int signo) {
  if (signo == SIGINT) {
    _exit(130);
  }
}
#endif

Jeffrey Morgan's avatar
Jeffrey Morgan committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
int get_embeddings(void *params_ptr, void *state_pr, float *res_embeddings) {
  gpt_params *params_p = (gpt_params *)params_ptr;
  llama_context *ctx = (llama_context *)state_pr;
  gpt_params params = *params_p;

  if (params.seed <= 0) {
    params.seed = time(NULL);
  }

  std::mt19937 rng(params.seed);

  llama_init_backend(params.numa);

  int n_past = 0;

  // Add a space in front of the first character to match OG llama tokenizer
  // behavior
  params.prompt.insert(0, 1, ' ');

  // tokenize the prompt
  auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);

  // determine newline token
  auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);

  if (embd_inp.size() > 0) {
    if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past,
                   params.n_threads)) {
      fprintf(stderr, "%s : failed to eval\n", __func__);
      return 1;
    }
  }

  const int n_embd = llama_n_embd(ctx);

  const auto embeddings = llama_get_embeddings(ctx);

  for (int i = 0; i < n_embd; i++) {
    res_embeddings[i] = embeddings[i];
  }

  return 0;
}

int get_token_embeddings(void *params_ptr, void *state_pr, int *tokens,
                         int tokenSize, float *res_embeddings) {
  gpt_params *params_p = (gpt_params *)params_ptr;
  llama_context *ctx = (llama_context *)state_pr;
  gpt_params params = *params_p;

  for (int i = 0; i < tokenSize; i++) {
    auto token_str = llama_token_to_str(ctx, tokens[i]);
    if (token_str == nullptr) {
      continue;
    }
    std::vector<std::string> my_vector;
    std::string str_token(token_str); // create a new std::string from the char*
    params_p->prompt += str_token;
  }

  return get_embeddings(params_ptr, state_pr, res_embeddings);
}

int eval(void *params_ptr, void *state_pr, char *text) {
  gpt_params *params_p = (gpt_params *)params_ptr;
  llama_context *ctx = (llama_context *)state_pr;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
102
103

  auto n_past = 0;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
104
105
  auto last_n_tokens_data =
      std::vector<llama_token>(params_p->repeat_last_n, 0);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
106

Jeffrey Morgan's avatar
Jeffrey Morgan committed
107
  auto tokens = std::vector<llama_token>(params_p->n_ctx);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
108
109
110
111
112
113
114
115
  auto n_prompt_tokens =
      llama_tokenize(ctx, text, tokens.data(), tokens.size(), true);

  if (n_prompt_tokens < 1) {
    fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
    return 1;
  }

Jeffrey Morgan's avatar
Jeffrey Morgan committed
116
  // evaluate prompt
Jeffrey Morgan's avatar
Jeffrey Morgan committed
117
  return llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past,
Jeffrey Morgan's avatar
Jeffrey Morgan committed
118
                    params_p->n_threads);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
119
120
}

Jeffrey Morgan's avatar
Jeffrey Morgan committed
121
122
123
124
125
int llama_predict(void *params_ptr, void *state_pr, char *result, bool debug) {
  gpt_params *params_p = (gpt_params *)params_ptr;
  llama_context *ctx = (llama_context *)state_pr;

  gpt_params params = *params_p;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
126
127
128

  const int n_ctx = llama_n_ctx(ctx);

Jeffrey Morgan's avatar
Jeffrey Morgan committed
129
130
  if (params.seed <= 0) {
    params.seed = time(NULL);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
131
132
  }

Jeffrey Morgan's avatar
Jeffrey Morgan committed
133
134
135
  std::mt19937 rng(params.seed);

  std::string path_session = params.path_prompt_cache;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  std::vector<llama_token> session_tokens;

  if (!path_session.empty()) {
    if (debug) {
      fprintf(stderr, "%s: attempting to load saved session from '%s'\n",
              __func__, path_session.c_str());
    }
    // fopen to check for existing session
    FILE *fp = std::fopen(path_session.c_str(), "rb");
    if (fp != NULL) {
      std::fclose(fp);

      session_tokens.resize(n_ctx);
      size_t n_token_count_out = 0;
      if (!llama_load_session_file(
              ctx, path_session.c_str(), session_tokens.data(),
              session_tokens.capacity(), &n_token_count_out)) {
        fprintf(stderr, "%s: error: failed to load session file '%s'\n",
                __func__, path_session.c_str());
        return 1;
      }
      session_tokens.resize(n_token_count_out);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
158
      llama_set_rng_seed(ctx, params.seed);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
159
160
161
162
163
164
165
166
167
168
169
170
171
      if (debug) {
        fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n",
                __func__, (int)session_tokens.size());
      }
    } else {
      if (debug) {
        fprintf(stderr, "%s: session file does not exist, will create\n",
                __func__);
      }
    }
  }

  std::vector<llama_token> embd_inp;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
172
  if (!params.prompt.empty() || session_tokens.empty()) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
173
174
    // Add a space in front of the first character to match OG llama tokenizer
    // behavior
Jeffrey Morgan's avatar
Jeffrey Morgan committed
175
    params.prompt.insert(0, 1, ' ');
Jeffrey Morgan's avatar
Jeffrey Morgan committed
176

Jeffrey Morgan's avatar
Jeffrey Morgan committed
177
    embd_inp = ::llama_tokenize(ctx, params.prompt, true);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
  } else {
    embd_inp = session_tokens;
  }

  // debug message about similarity of saved session, if applicable
  size_t n_matching_session_tokens = 0;
  if (session_tokens.size()) {
    for (llama_token id : session_tokens) {
      if (n_matching_session_tokens >= embd_inp.size() ||
          id != embd_inp[n_matching_session_tokens]) {
        break;
      }
      n_matching_session_tokens++;
    }
    if (debug) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
193
      if (params.prompt.empty() &&
Jeffrey Morgan's avatar
Jeffrey Morgan committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
          n_matching_session_tokens == embd_inp.size()) {
        fprintf(stderr, "%s: using full prompt from session file\n", __func__);
      } else if (n_matching_session_tokens >= embd_inp.size()) {
        fprintf(stderr, "%s: session file has exact match for prompt!\n",
                __func__);
      } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
        fprintf(stderr,
                "%s: warning: session file has low similarity to prompt (%zu / "
                "%zu tokens); will mostly be reevaluated\n",
                __func__, n_matching_session_tokens, embd_inp.size());
      } else {
        fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
                __func__, n_matching_session_tokens, embd_inp.size());
      }
    }
  }
  // if we will use the cache for the full prompt without reaching the end of
  // the cache, force reevaluation of the last token token to recalculate the
  // cached logits
  if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
      session_tokens.size() > embd_inp.size()) {
    session_tokens.resize(embd_inp.size() - 1);
  }
  // number of tokens to keep when resetting context
Jeffrey Morgan's avatar
Jeffrey Morgan committed
218
219
  if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size()) {
    params.n_keep = (int)embd_inp.size();
Jeffrey Morgan's avatar
Jeffrey Morgan committed
220
221
222
223
224
225
226
227
228
229
230
231
  }

  // determine newline token
  auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);

  // TODO: replace with ring-buffer
  std::vector<llama_token> last_n_tokens(n_ctx);
  std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);

  bool need_to_save_session =
      !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  int n_past = 0;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
232
  int n_remain = params.n_predict;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
233
234
235
236
237
238
239
240
241
242
243
  int n_consumed = 0;
  int n_session_consumed = 0;

  std::vector<llama_token> embd;
  std::string res = "";

  // do one empty run to warm up the model
  {
    const std::vector<llama_token> tmp = {
        llama_token_bos(),
    };
Jeffrey Morgan's avatar
Jeffrey Morgan committed
244
    llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
245
246
247
248
249
250
251
252
253
254
255
256
    llama_reset_timings(ctx);
  }

  while (n_remain != 0) {
    // predict
    if (embd.size() > 0) {
      // infinite text generation via context swapping
      // if we run out of context:
      // - take the n_keep first tokens from the original prompt (via n_past)
      // - take half of the last (n_ctx - n_keep) tokens and recompute the
      // logits in batches
      if (n_past + (int)embd.size() > n_ctx) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
257
        const int n_left = n_past - params.n_keep;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
258
259

        // always keep the first token - BOS
Jeffrey Morgan's avatar
Jeffrey Morgan committed
260
        n_past = std::max(1, params.n_keep);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
261
262
263
264
265
266
267
268

        // insert n_left/2 tokens at the start of embd from last_n_tokens
        embd.insert(embd.begin(),
                    last_n_tokens.begin() + n_ctx - n_left / 2 - embd.size(),
                    last_n_tokens.end() - embd.size());

        // stop saving session if we run out of context
        path_session.clear();
Jeffrey Morgan's avatar
Jeffrey Morgan committed
269
270
271
272
273
274
275
276

        // printf("\n---\n");
        // printf("resetting: '");
        // for (int i = 0; i < (int) embd.size(); i++) {
        //     printf("%s", llama_token_to_str(ctx, embd[i]));
        // }
        // printf("'\n");
        // printf("\n---\n");
Jeffrey Morgan's avatar
Jeffrey Morgan committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
      }

      // try to reuse a matching prefix from the loaded session instead of
      // re-eval (via n_past)
      if (n_session_consumed < (int)session_tokens.size()) {
        size_t i = 0;
        for (; i < embd.size(); i++) {
          if (embd[i] != session_tokens[n_session_consumed]) {
            session_tokens.resize(n_session_consumed);
            break;
          }

          n_past++;
          n_session_consumed++;

          if (n_session_consumed >= (int)session_tokens.size()) {
            ++i;
            break;
          }
        }
        if (i > 0) {
          embd.erase(embd.begin(), embd.begin() + i);
        }
      }

      // evaluate tokens in batches
      // embd is typically prepared beforehand to fit within a batch, but not
      // always
Jeffrey Morgan's avatar
Jeffrey Morgan committed
305
      for (int i = 0; i < (int)embd.size(); i += params.n_batch) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
306
        int n_eval = (int)embd.size() - i;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
307
308
        if (n_eval > params.n_batch) {
          n_eval = params.n_batch;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
309
        }
Jeffrey Morgan's avatar
Jeffrey Morgan committed
310
        if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
          fprintf(stderr, "%s : failed to eval\n", __func__);
          return 1;
        }
        n_past += n_eval;
      }

      if (embd.size() > 0 && !path_session.empty()) {
        session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
        n_session_consumed = session_tokens.size();
      }
    }

    embd.clear();

    if ((int)embd_inp.size() <= n_consumed) {
      // out of user input, sample next token
Jeffrey Morgan's avatar
Jeffrey Morgan committed
327
      const float temp = params.temp;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
328
      const int32_t top_k =
Jeffrey Morgan's avatar
Jeffrey Morgan committed
329
330
331
332
          params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
      const float top_p = params.top_p;
      const float tfs_z = params.tfs_z;
      const float typical_p = params.typical_p;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
333
      const int32_t repeat_last_n =
Jeffrey Morgan's avatar
Jeffrey Morgan committed
334
335
336
337
338
339
340
341
          params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
      const float repeat_penalty = params.repeat_penalty;
      const float alpha_presence = params.presence_penalty;
      const float alpha_frequency = params.frequency_penalty;
      const int mirostat = params.mirostat;
      const float mirostat_tau = params.mirostat_tau;
      const float mirostat_eta = params.mirostat_eta;
      const bool penalize_nl = params.penalize_nl;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
342
343
344
345

      // optionally save the session on first sample (for faster prompt loading
      // next time)
      if (!path_session.empty() && need_to_save_session &&
Jeffrey Morgan's avatar
Jeffrey Morgan committed
346
          !params.prompt_cache_ro) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
347
348
349
350
351
352
353
354
355
356
357
358
        need_to_save_session = false;
        llama_save_session_file(ctx, path_session.c_str(),
                                session_tokens.data(), session_tokens.size());
      }

      llama_token id = 0;

      {
        auto logits = llama_get_logits(ctx);
        auto n_vocab = llama_n_vocab(ctx);

        // Apply params.logit_bias map
Jeffrey Morgan's avatar
Jeffrey Morgan committed
359
360
        for (auto it = params.logit_bias.begin(); it != params.logit_bias.end();
             it++) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
          logits[it->first] += it->second;
        }

        std::vector<llama_token_data> candidates;
        candidates.reserve(n_vocab);
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
          candidates.emplace_back(
              llama_token_data{token_id, logits[token_id], 0.0f});
        }

        llama_token_data_array candidates_p = {candidates.data(),
                                               candidates.size(), false};

        // Apply penalties
        float nl_logit = logits[llama_token_nl()];
        auto last_n_repeat =
            std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
        llama_sample_repetition_penalty(
            ctx, &candidates_p,
            last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
            last_n_repeat, repeat_penalty);
        llama_sample_frequency_and_presence_penalties(
            ctx, &candidates_p,
            last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
            last_n_repeat, alpha_frequency, alpha_presence);
        if (!penalize_nl) {
          logits[llama_token_nl()] = nl_logit;
        }

        if (temp <= 0) {
          // Greedy sampling
          id = llama_sample_token_greedy(ctx, &candidates_p);
        } else {
          if (mirostat == 1) {
            static float mirostat_mu = 2.0f * mirostat_tau;
            const int mirostat_m = 100;
            llama_sample_temperature(ctx, &candidates_p, temp);
            id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau,
                                             mirostat_eta, mirostat_m,
                                             &mirostat_mu);
          } else if (mirostat == 2) {
            static float mirostat_mu = 2.0f * mirostat_tau;
            llama_sample_temperature(ctx, &candidates_p, temp);
            id = llama_sample_token_mirostat_v2(
                ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
          } else {
            // Temperature sampling
            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
            llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
            llama_sample_typical(ctx, &candidates_p, typical_p, 1);
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
            llama_sample_temperature(ctx, &candidates_p, temp);
            id = llama_sample_token(ctx, &candidates_p);
          }
        }
Jeffrey Morgan's avatar
Jeffrey Morgan committed
416
        // printf("`%d`", candidates_p.size);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430

        last_n_tokens.erase(last_n_tokens.begin());
        last_n_tokens.push_back(id);
      }

      // add it to the context
      embd.push_back(id);

      // decrement remaining sampling budget
      --n_remain;

      // call the token callback, no need to check if one is actually
      // registered, that will be handled on the Go side.
      auto token_str = llama_token_to_str(ctx, id);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
431
      if (!tokenCallback(state_pr, (char *)token_str)) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
432
433
434
435
436
437
438
439
440
441
        break;
      }
    } else {
      // some user input remains from prompt or interaction, forward it to
      // processing
      while ((int)embd_inp.size() > n_consumed) {
        embd.push_back(embd_inp[n_consumed]);
        last_n_tokens.erase(last_n_tokens.begin());
        last_n_tokens.push_back(embd_inp[n_consumed]);
        ++n_consumed;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
442
        if ((int)embd.size() >= params.n_batch) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
443
444
445
446
447
448
449
450
451
452
          break;
        }
      }
    }

    for (auto id : embd) {
      res += llama_token_to_str(ctx, id);
    }

    // check for stop prompt
Jeffrey Morgan's avatar
Jeffrey Morgan committed
453
    if (params.antiprompt.size()) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
454
455
456
457
458
      std::string last_output;
      for (auto id : last_n_tokens) {
        last_output += llama_token_to_str(ctx, id);
      }
      // Check if each of the reverse prompts appears at the end of the output.
Jeffrey Morgan's avatar
Jeffrey Morgan committed
459
      for (std::string &antiprompt : params.antiprompt) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        // size_t extra_padding = params.interactive ? 0 : 2;
        size_t extra_padding = 2;
        size_t search_start_pos =
            last_output.length() >
                    static_cast<size_t>(antiprompt.length() + extra_padding)
                ? last_output.length() -
                      static_cast<size_t>(antiprompt.length() + extra_padding)
                : 0;

        if (last_output.find(antiprompt.c_str(), search_start_pos) !=
            std::string::npos) {
          goto end;
        }
      }
    }

    // end of text token
    if (!embd.empty() && embd.back() == llama_token_eos()) {
      break;
    }
  }

Jeffrey Morgan's avatar
Jeffrey Morgan committed
482
483
  if (!path_session.empty() && params.prompt_cache_all &&
      !params.prompt_cache_ro) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    if (debug) {
      fprintf(stderr, "\n%s: saving final output to session file '%s'\n",
              __func__, path_session.c_str());
    }
    llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(),
                            session_tokens.size());
  }

end:
#if defined(_WIN32)
  signal(SIGINT, SIG_DFL);
#endif

  if (debug) {
    llama_print_timings(ctx);
    llama_reset_timings(ctx);
  }

  strcpy(result, res.c_str());
  return 0;
}

Jeffrey Morgan's avatar
Jeffrey Morgan committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
void llama_binding_free_model(void *state_ptr) {
  llama_context *ctx = (llama_context *)state_ptr;
  llama_free(ctx);
}

void llama_free_params(void *params_ptr) {
  gpt_params *params = (gpt_params *)params_ptr;
  delete params;
}

std::vector<std::string> create_vector(const char **strings, int count) {
  std::vector<std::string> *vec = new std::vector<std::string>;
  for (int i = 0; i < count; i++) {
    vec->push_back(std::string(strings[i]));
  }
  return *vec;
}

void delete_vector(std::vector<std::string> *vec) { delete vec; }

int load_state(void *ctx, char *statefile, char *modes) {
  llama_context *state = (llama_context *)ctx;
  const llama_context *constState = static_cast<const llama_context *>(state);
  const size_t state_size = llama_get_state_size(state);
  uint8_t *state_mem = new uint8_t[state_size];

  {
    FILE *fp_read = fopen(statefile, modes);
    if (state_size != llama_get_state_size(constState)) {
      fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
      return 1;
    }

    const size_t ret = fread(state_mem, 1, state_size, fp_read);
    if (ret != state_size) {
      fprintf(stderr, "\n%s : failed to read state\n", __func__);
      return 1;
    }

    llama_set_state_data(
        state, state_mem); // could also read directly from memory mapped file
    fclose(fp_read);
  }

  return 0;
}

void save_state(void *ctx, char *dst, char *modes) {
  llama_context *state = (llama_context *)ctx;

  const size_t state_size = llama_get_state_size(state);
  uint8_t *state_mem = new uint8_t[state_size];

  // Save state (rng, logits, embedding and kv_cache) to file
  {
    FILE *fp_write = fopen(dst, modes);
    llama_copy_state_data(
        state, state_mem); // could also copy directly to memory mapped file
    fwrite(state_mem, 1, state_size, fp_write);
    fclose(fp_write);
  }
}
Jeffrey Morgan's avatar
Jeffrey Morgan committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

void *llama_allocate_params(
    const char *prompt, int seed, int threads, int tokens, int top_k,
    float top_p, float temp, float repeat_penalty, int repeat_last_n,
    bool ignore_eos, bool memory_f16, int n_batch, int n_keep,
    const char **antiprompt, int antiprompt_count, float tfs_z, float typical_p,
    float frequency_penalty, float presence_penalty, int mirostat,
    float mirostat_eta, float mirostat_tau, bool penalize_nl,
    const char *logit_bias, const char *session_file, bool prompt_cache_all,
    bool mlock, bool mmap, const char *maingpu, const char *tensorsplit,
    bool prompt_cache_ro) {
  gpt_params *params = new gpt_params;
  params->seed = seed;
  params->n_threads = threads;
  params->n_predict = tokens;
  params->repeat_last_n = repeat_last_n;
  params->prompt_cache_ro = prompt_cache_ro;
  params->top_k = top_k;
  params->top_p = top_p;
  params->memory_f16 = memory_f16;
  params->temp = temp;
  params->use_mmap = mmap;
  params->use_mlock = mlock;
  params->repeat_penalty = repeat_penalty;
  params->n_batch = n_batch;
  params->n_keep = n_keep;
  if (maingpu[0] != '\0') {
    params->main_gpu = std::stoi(maingpu);
  }

  if (tensorsplit[0] != '\0') {
    std::string arg_next = tensorsplit;
    // split string by , and /
    const std::regex regex{R"([,/]+)"};
    std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
    std::vector<std::string> split_arg{it, {}};
    GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);

    for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
      if (i < split_arg.size()) {
        params->tensor_split[i] = std::stof(split_arg[i]);
      } else {
        params->tensor_split[i] = 0.0f;
      }
    }
  }

  params->prompt_cache_all = prompt_cache_all;
  params->path_prompt_cache = session_file;

  if (ignore_eos) {
    params->logit_bias[llama_token_eos()] = -INFINITY;
  }
  if (antiprompt_count > 0) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
622
    params->antiprompt = create_vector(antiprompt, antiprompt_count);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
  }
  params->tfs_z = tfs_z;
  params->typical_p = typical_p;
  params->presence_penalty = presence_penalty;
  params->mirostat = mirostat;
  params->mirostat_eta = mirostat_eta;
  params->mirostat_tau = mirostat_tau;
  params->penalize_nl = penalize_nl;
  std::stringstream ss(logit_bias);
  llama_token key;
  char sign;
  std::string value_str;
  if (ss >> key && ss >> sign && std::getline(ss, value_str) &&
      (sign == '+' || sign == '-')) {
    params->logit_bias[key] =
        std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  }
  params->frequency_penalty = frequency_penalty;
  params->prompt = prompt;

  return params;
}

void *load_model(const char *fname, int n_ctx, int n_seed, bool memory_f16,
                 bool mlock, bool embeddings, bool mmap, bool low_vram,
                 bool vocab_only, int n_gpu_layers, int n_batch,
                 const char *maingpu, const char *tensorsplit, bool numa) {
Jeffrey Morgan's avatar
Jeffrey Morgan committed
650
  // load the model
Jeffrey Morgan's avatar
Jeffrey Morgan committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  auto lparams = llama_context_default_params();

  lparams.n_ctx = n_ctx;
  lparams.seed = n_seed;
  lparams.f16_kv = memory_f16;
  lparams.embedding = embeddings;
  lparams.use_mlock = mlock;
  lparams.n_gpu_layers = n_gpu_layers;
  lparams.use_mmap = mmap;
  lparams.low_vram = low_vram;
  lparams.vocab_only = vocab_only;

  if (maingpu[0] != '\0') {
    lparams.main_gpu = std::stoi(maingpu);
  }

  if (tensorsplit[0] != '\0') {
    std::string arg_next = tensorsplit;
    // split string by , and /
    const std::regex regex{R"([,/]+)"};
    std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
    std::vector<std::string> split_arg{it, {}};
    GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);

    for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
      if (i < split_arg.size()) {
        lparams.tensor_split[i] = std::stof(split_arg[i]);
      } else {
        lparams.tensor_split[i] = 0.0f;
      }
    }
  }

  lparams.n_batch = n_batch;

  llama_init_backend(numa);
Jeffrey Morgan's avatar
Jeffrey Morgan committed
687
688
689
690
691
692
  void *res = nullptr;
  try {
    res = llama_init_from_file(fname, lparams);
  } catch (std::runtime_error &e) {
    fprintf(stderr, "failed %s", e.what());
    return res;
Jeffrey Morgan's avatar
Jeffrey Morgan committed
693
694
  }

Jeffrey Morgan's avatar
Jeffrey Morgan committed
695
696
  return res;
}