server.go 53.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package llm

import (
	"bufio"
	"bytes"
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"log"
	"log/slog"
	"math/rand"
	"net"
	"net/http"
	"os"
	"os/exec"
	"path/filepath"
	"runtime"
20
	"slices"
Jesse Gross's avatar
Jesse Gross committed
21
	"sort"
22
23
	"strconv"
	"strings"
24
	"sync"
25
26
	"time"

Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
32
	"github.com/ollama/ollama/fs/ggml"
33
	"github.com/ollama/ollama/llama"
34
	"github.com/ollama/ollama/logutil"
Jesse Gross's avatar
Jesse Gross committed
35
	"github.com/ollama/ollama/ml"
36
	"github.com/ollama/ollama/model"
37
38
)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
type filteredEnv []string

func (e filteredEnv) LogValue() slog.Value {
	var attrs []slog.Attr
	for _, env := range e {
		if key, value, ok := strings.Cut(env, "="); ok {
			switch {
			case strings.HasPrefix(key, "OLLAMA_"),
				strings.HasPrefix(key, "CUDA_"),
				strings.HasPrefix(key, "ROCR_"),
				strings.HasPrefix(key, "ROCM_"),
				strings.HasPrefix(key, "HIP_"),
				strings.HasPrefix(key, "GPU_"),
				strings.HasPrefix(key, "HSA_"),
				strings.HasPrefix(key, "GGML_"),
				slices.Contains([]string{
					"PATH",
					"LD_LIBRARY_PATH",
					"DYLD_LIBRARY_PATH",
				}, key):
				attrs = append(attrs, slog.String(key, value))
			}
		}
	}
	return slog.GroupValue(attrs...)
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
66
type LlamaServer interface {
Jesse Gross's avatar
Jesse Gross committed
67
	ModelPath() string
68
	Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
70
71
	Ping(ctx context.Context) error
	WaitUntilRunning(ctx context.Context) error
	Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
72
	Embedding(ctx context.Context, input string) ([]float32, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
73
74
75
	Tokenize(ctx context.Context, content string) ([]int, error)
	Detokenize(ctx context.Context, tokens []int) (string, error)
	Close() error
Jesse Gross's avatar
Jesse Gross committed
76
77
	VRAMSize() uint64 // Total VRAM across all GPUs
	TotalSize() uint64
78
	VRAMByGPU(id ml.DeviceID) uint64
79
	Pid() int
80
81
82
	GetPort() int
	GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
	HasExited() bool
Daniel Hiltgen's avatar
Daniel Hiltgen committed
83
84
}

Jesse Gross's avatar
Jesse Gross committed
85
// llmServer is an instance of a runner hosting a single model
Daniel Hiltgen's avatar
Daniel Hiltgen committed
86
type llmServer struct {
87
88
89
90
91
92
	port      int
	cmd       *exec.Cmd
	done      chan error // Channel to signal when the process exits
	status    *StatusWriter
	options   api.Options
	modelPath string
93

94
95
	loadRequest LoadRequest       // Parameters used to initialize the runner
	mem         *ml.BackendMemory // Memory allocations for this model
Jesse Gross's avatar
Jesse Gross committed
96

97
98
99
	// llamaModel is an instance of the cgo llama.cpp model definition
	// nil if this server is running the new engine
	llamaModel     *llama.Model
Jesse Gross's avatar
Jesse Gross committed
100
	llamaModelLock *sync.Mutex
101

Jesse Gross's avatar
Jesse Gross committed
102
103
	totalLayers  uint64
	loadStart    time.Time // Record how long it took the model to load
104
	loadProgress float32
Daniel Hiltgen's avatar
Daniel Hiltgen committed
105
106

	sem *semaphore.Weighted
107
108
}

Jesse Gross's avatar
Jesse Gross committed
109
110
111
type llamaServer struct {
	llmServer

112
	ggml *ggml.GGML
Jesse Gross's avatar
Jesse Gross committed
113
114
115
116
}

type ollamaServer struct {
	llmServer
117
118

	textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
Jesse Gross's avatar
Jesse Gross committed
119
120
}

121
122
123
124
125
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
Michael Yang's avatar
Michael Yang committed
126
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
127
128
129
130
	if _, err := os.Stat(model); err != nil {
		return nil, err
	}

131
132
133
134
135
136
	f, err := os.Open(model)
	if err != nil {
		return nil, err
	}
	defer f.Close()

137
	ggml, err := ggml.Decode(f, maxArraySize)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
138
139
	return ggml, err
}
140

Daniel Hiltgen's avatar
Daniel Hiltgen committed
141
// NewLlamaServer will run a server for the given GPUs
142
func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
Jesse Gross's avatar
Jesse Gross committed
143
144
145
146
	var llamaModel *llama.Model
	var textProcessor model.TextProcessor
	var err error
	if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
147
148
149
150
151
		if len(projectors) == 0 {
			textProcessor, err = model.NewTextProcessor(modelPath)
		} else {
			err = errors.New("split vision models aren't supported")
		}
Jesse Gross's avatar
Jesse Gross committed
152
153
154
155
		if err != nil {
			// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
			slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
		}
156
	}
Jesse Gross's avatar
Jesse Gross committed
157
158
159
160
161
	if textProcessor == nil {
		llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
		if err != nil {
			return nil, err
		}
162
163
	}

Jesse Gross's avatar
Jesse Gross committed
164
165
166
167
168
	// Verify the requested context size is <= the model training size
	trainCtx := f.KV().ContextLength()
	if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
		slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "n_ctx_train", trainCtx)
		opts.NumCtx = int(trainCtx)
169
170
	}

171
172
	opts.NumBatch = min(opts.NumBatch, opts.NumCtx)

Jesse Gross's avatar
Jesse Gross committed
173
	loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
174

175
	defaultThreads := systemInfo.ThreadCount
Jesse Gross's avatar
Jesse Gross committed
176
177
178
179
	if opts.NumThread > 0 {
		loadRequest.NumThreads = opts.NumThread
	} else if defaultThreads > 0 {
		loadRequest.NumThreads = defaultThreads
180
	}
Michael Yang's avatar
Michael Yang committed
181

Jesse Gross's avatar
Jesse Gross committed
182
	// TODO - NUMA support currently doesn't work properly
183
184

	if opts.MainGPU > 0 {
Jesse Gross's avatar
Jesse Gross committed
185
		loadRequest.MainGPU = opts.MainGPU
186
187
	}

Jesse Gross's avatar
Jesse Gross committed
188
189
	if len(projectors) > 0 && llamaModel != nil {
		loadRequest.ProjectorPath = projectors[0]
190
191
	}

192
193
	fa := envconfig.FlashAttention(f.FlashAttention())

Jesse Gross's avatar
Jesse Gross committed
194
195
	// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
	// that can handle it.
196
	if fa && !ml.FlashAttentionSupported(gpus) {
197
198
199
		slog.Warn("flash attention enabled but not supported by gpu")
		fa = false
	}
Sam's avatar
Sam committed
200

Michael Yang's avatar
Michael Yang committed
201
	if fa && !f.SupportsFlashAttention() {
202
203
204
205
		slog.Warn("flash attention enabled but not supported by model")
		fa = false
	}

206
	kvct := strings.ToLower(envconfig.KvCacheType())
207
208
209

	if fa {
		slog.Info("enabling flash attention")
Jesse Gross's avatar
Jesse Gross committed
210
		loadRequest.FlashAttention = true
211
212
213

		// Flash Attention also supports kv cache quantization
		// Enable if the requested and kv cache type is supported by the model
214
		if f.SupportsKVCacheType(kvct) {
Jesse Gross's avatar
Jesse Gross committed
215
			loadRequest.KvCacheType = kvct
216
217
		} else {
			slog.Warn("kv cache type not supported by model", "type", kvct)
Sam's avatar
Sam committed
218
		}
219
220
221
	} else if kvct != "" && kvct != "f16" {
		slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
	}
222

223
224
225
226
227
228
229
	gpuLibs := ml.LibraryPaths(gpus)
	status := NewStatusWriter(os.Stderr)
	cmd, port, err := StartRunner(
		textProcessor != nil,
		modelPath,
		gpuLibs,
		status,
230
		ml.GetVisibleDevicesEnv(gpus, false),
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
	)

	s := llmServer{
		port:           port,
		cmd:            cmd,
		status:         status,
		options:        opts,
		modelPath:      modelPath,
		loadRequest:    loadRequest,
		llamaModel:     llamaModel,
		llamaModelLock: &sync.Mutex{},
		sem:            semaphore.NewWeighted(int64(numParallel)),
		totalLayers:    f.KV().BlockCount() + 1,
		loadStart:      time.Now(),
		done:           make(chan error, 1),
Jesse Gross's avatar
Jesse Gross committed
246
247
	}

248
249
250
251
252
253
254
255
256
257
	if err != nil {
		var msg string
		if s.status != nil && s.status.LastErrMsg != "" {
			msg = s.status.LastErrMsg
		}
		err := fmt.Errorf("error starting runner: %v %s", err, msg)
		if llamaModel != nil {
			llama.FreeModel(llamaModel)
		}
		return nil, err
Michael Yang's avatar
Michael Yang committed
258
259
	}

260
261
262
263
264
265
266
267
	// reap subprocess when it exits
	go func() {
		err := s.cmd.Wait()
		// Favor a more detailed message over the process exit status
		if err != nil && s.status != nil && s.status.LastErrMsg != "" {
			slog.Error("llama runner terminated", "error", err)
			if strings.Contains(s.status.LastErrMsg, "unknown model") {
				s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
Jesse Gross's avatar
Jesse Gross committed
268
			}
269
270
271
			s.done <- errors.New(s.status.LastErrMsg)
		} else {
			s.done <- err
272
		}
273
	}()
274

275
	if textProcessor != nil {
276
		return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
277
278
	} else {
		return &llamaServer{llmServer: s, ggml: f}, nil
Michael Yang's avatar
Michael Yang committed
279
	}
280
}
Jesse Gross's avatar
Jesse Gross committed
281

282
283
284
func StartRunner(ollamaEngine bool, modelPath string, gpuLibs []string, out io.Writer, extraEnvs map[string]string) (cmd *exec.Cmd, port int, err error) {
	var exe string
	exe, err = os.Executable()
285
	if err != nil {
286
		return nil, 0, fmt.Errorf("unable to lookup executable path: %w", err)
287
288
289
290
291
292
	}

	if eval, err := filepath.EvalSymlinks(exe); err == nil {
		exe = eval
	}

293
294
295
296
297
298
	port = 0
	if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
		var l *net.TCPListener
		if l, err = net.ListenTCP("tcp", a); err == nil {
			port = l.Addr().(*net.TCPAddr).Port
			l.Close()
Jesse Gross's avatar
Jesse Gross committed
299
		}
300
301
302
303
304
305
306
307
308
309
	}
	if port == 0 {
		slog.Debug("ResolveTCPAddr failed, using random port")
		port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
	}
	params := []string{"runner"}
	if ollamaEngine {
		params = append(params, "--ollama-engine")
	}
	if modelPath != "" {
Jesse Gross's avatar
Jesse Gross committed
310
		params = append(params, "--model", modelPath)
311
312
	}
	params = append(params, "--port", strconv.Itoa(port))
Daniel Hiltgen's avatar
Daniel Hiltgen committed
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
	var pathEnv string
	switch runtime.GOOS {
	case "windows":
		pathEnv = "PATH"
	case "darwin":
		pathEnv = "DYLD_LIBRARY_PATH"
	default:
		pathEnv = "LD_LIBRARY_PATH"
	}

	// Note: we always put our dependency paths first
	// since these are the exact version we compiled/linked against
	libraryPaths := append([]string{}, gpuLibs...)
	if libraryPath, ok := os.LookupEnv(pathEnv); ok {
		libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
	}

	cmd = exec.Command(exe, params...)

	cmd.Env = os.Environ()
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

	if out != nil {
		stdout, err := cmd.StdoutPipe()
		if err != nil {
			return nil, 0, fmt.Errorf("failed to spawn server stdout pipe: %w", err)
		}
		stderr, err := cmd.StderrPipe()
		if err != nil {
			return nil, 0, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
		}
		go func() {
			io.Copy(out, stdout) //nolint:errcheck
		}()
		go func() {
			io.Copy(out, stderr) //nolint:errcheck
		}()
	}
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
	cmd.SysProcAttr = LlamaServerSysProcAttr

	// Always filter down the set of GPUs in case there are any unsupported devices that might crash
	pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))

	// Update or add the path variable with our adjusted version
	pathNeeded := true
	ollamaPathNeeded := true
	extraEnvsDone := map[string]bool{}
	for k := range extraEnvs {
		extraEnvsDone[k] = false
	}
	for i := range cmd.Env {
		cmp := strings.SplitN(cmd.Env[i], "=", 2)
		if strings.EqualFold(cmp[0], pathEnv) {
			cmd.Env[i] = pathEnv + "=" + pathEnvVal
			pathNeeded = false
		} else if strings.EqualFold(cmp[0], "OLLAMA_LIBRARY_PATH") {
			cmd.Env[i] = "OLLAMA_LIBRARY_PATH=" + strings.Join(gpuLibs, string(filepath.ListSeparator))
			ollamaPathNeeded = false
		} else if len(extraEnvs) != 0 {
			for k, v := range extraEnvs {
				if strings.EqualFold(cmp[0], k) {
					cmd.Env[i] = k + "=" + v
					extraEnvsDone[k] = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
376
				}
377
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
378
		}
379
380
381
382
383
384
385
386
387
388
	}
	if pathNeeded {
		cmd.Env = append(cmd.Env, pathEnv+"="+pathEnvVal)
	}
	if ollamaPathNeeded {
		cmd.Env = append(cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(gpuLibs, string(filepath.ListSeparator)))
	}
	for k, done := range extraEnvsDone {
		if !done {
			cmd.Env = append(cmd.Env, k+"="+extraEnvs[k])
389
		}
390
	}
391

392
393
	slog.Info("starting runner", "cmd", cmd)
	slog.Debug("subprocess", "", filteredEnv(cmd.Env))
Daniel Hiltgen's avatar
Daniel Hiltgen committed
394

395
396
	if err = cmd.Start(); err != nil {
		return nil, 0, err
Jesse Gross's avatar
Jesse Gross committed
397
	}
398
399
	err = nil
	return
Jesse Gross's avatar
Jesse Gross committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
}

func (s *llmServer) ModelPath() string {
	return s.modelPath
}

type LoadOperation int

// The order of these constants are significant because we iterate over the operations. They
// should be in order of increasingly loading the model.
const (
	LoadOperationFit    LoadOperation = iota // Return memory requirements but do not allocate
	LoadOperationAlloc                       // Allocate memory but do not load the weights
	LoadOperationCommit                      // Load weights - further changes cannot be made after this
	LoadOperationClose                       // Close model and free memory
)

func (o LoadOperation) String() string {
	switch o {
	case LoadOperationFit:
		return "fit"
	case LoadOperationAlloc:
		return "alloc"
	case LoadOperationCommit:
		return "commit"
	case LoadOperationClose:
		return "close"
	default:
		return "unknown"
	}
}

type LoadRequest struct {
	Operation LoadOperation

	LoraPath       []string
	Parallel       int
	BatchSize      int
	FlashAttention bool
	KvSize         int
	KvCacheType    string
	NumThreads     int
	GPULayers      ml.GPULayersList
	MultiUserCache bool

	// Legacy fields - not used with the Ollama engine
	ProjectorPath string
	MainGPU       int
	UseMmap       bool
}

type LoadResponse struct {
	Success bool
	Memory  ml.BackendMemory
}

var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
func (s *llamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
	slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)

	gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)

	// Synthesize memory allocation information based on our estimates
	s.mem = &ml.BackendMemory{CPU: ml.DeviceMemory{
		Name:    "CPU",
		Weights: make([]uint64, s.totalLayers),
		Cache:   make([]uint64, s.totalLayers),
	}, GPUs: make([]ml.DeviceMemory, len(gpus))}

	for i := range s.mem.GPUs {
		s.mem.GPUs[i].Name = gpus[i].Name
		s.mem.GPUs[i].DeviceID = gpus[i].DeviceID
		s.mem.GPUs[i].Weights = make([]uint64, s.totalLayers)
		s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
	}
Jesse Gross's avatar
Jesse Gross committed
476

477
478
479
480
481
482
483
484
	kv, graphPartialOffload, graphFullOffload := s.ggml.GraphSize(uint64(s.options.NumCtx), uint64(s.loadRequest.BatchSize),
		s.loadRequest.Parallel, s.loadRequest.KvCacheType, s.loadRequest.FlashAttention)

	// Use the size of one layer as a buffer
	layers := s.ggml.Tensors().GroupLayers()
	if blk0, ok := layers["blk.0"]; ok {
		for i := range gpus {
			gpus[i].FreeMemory -= blk0.Size() + kv[0]
485
486
		}
	} else {
487
488
489
490
491
492
493
494
		slog.Warn("model missing blk.0 layer size")
	}

	// Assign all the layers to the CPU for now, they will get reassigned later
	for i := range s.ggml.KV().BlockCount() {
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
			s.mem.CPU.Weights[i] = blk.Size()
			s.mem.CPU.Cache[i] += kv[i]
Jesse Gross's avatar
Jesse Gross committed
495
496
497
		}
	}

498
499
500
501
502
503
504
505
506
507
508
	// We historically haven't included InputWeights in the model size
	var outputWeights uint64
	if layer, ok := layers["output_norm"]; ok {
		outputWeights += layer.Size()
	}
	if layer, ok := layers["output"]; ok {
		outputWeights += layer.Size()
	} else if layer, ok := layers["token_embd"]; ok {
		outputWeights += layer.Size()
	}
	s.mem.CPU.Weights[s.totalLayers-1] = outputWeights
Jesse Gross's avatar
Jesse Gross committed
509

510
511
512
513
514
515
516
	// The vision projector is always loaded on the first GPU if available.
	// This can't be assigned by us, so just subtract it from free space
	projectorGPU := -1
	var projectorWeights uint64
	if len(gpus) > 0 {
		for _, projector := range s.loadRequest.LoraPath {
			projectorWeights += projectorMemoryRequirements(projector)
Jesse Gross's avatar
Jesse Gross committed
517
		}
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

		// llama.cpp uses the first discrete GPU if available, otherwise the first iGPU
		firstIntegrated := -1
		for i := range gpus {
			if !gpus[i].Integrated {
				projectorGPU = i
				break
			}
			if firstIntegrated == -1 {
				firstIntegrated = i
			}
		}
		if projectorGPU == -1 {
			projectorGPU = firstIntegrated
		}

		gpus[projectorGPU].FreeMemory -= projectorWeights
Jesse Gross's avatar
Jesse Gross committed
535
536
	}

537
538
539
540
541
542
543
544
545
	var kvTotal uint64
	for _, kvLayer := range kv {
		kvTotal += kvLayer
	}

	if graphPartialOffload == 0 {
		headsKV := s.ggml.KV().HeadCountKVMin()
		if headsKV == 0 {
			headsKV = 1
Jesse Gross's avatar
Jesse Gross committed
546
		}
547
548
549
550
551
		gqa := s.ggml.KV().HeadCountMax() / headsKV
		graphPartialOffload = gqa * kvTotal / 6
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
Jesse Gross's avatar
Jesse Gross committed
552
553
	}

554
555
556
557
	// On Metal there's no partial offload overhead
	if len(gpus) > 0 && gpus[0].Library == "Metal" {
		graphPartialOffload = graphFullOffload
	}
Jesse Gross's avatar
Jesse Gross committed
558

559
560
561
562
563
	// Create a layout based on the memory data that we've built. The compute graph
	// for GPUs is iteratively assigned based on the number of GPUs that are required.
	var gpuLayers ml.GPULayersList
	for {
		prevGPULayers := gpuLayers
Jesse Gross's avatar
Jesse Gross committed
564

565
566
567
568
569
		var err error
		gpuLayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, 0)
		if err != nil {
			return nil, err
		}
Jesse Gross's avatar
Jesse Gross committed
570

571
572
573
574
575
576
577
578
		if len(gpuLayers) > len(prevGPULayers) {
			for _, gl := range gpuLayers {
				for i := range s.mem.GPUs {
					if gl.DeviceID == s.mem.GPUs[i].DeviceID {
						s.mem.GPUs[i].Graph = max(graphPartialOffload, graphFullOffload)
						break
					}
				}
Jesse Gross's avatar
Jesse Gross committed
579
			}
580
581
		} else {
			break
Jesse Gross's avatar
Jesse Gross committed
582
		}
583
584
585
586
587
588
589
	}

	// This maintains the historical assignment of graph sizes, though it isn't fully accurate
	graphSize := graphFullOffload
	if gpuLayers.Sum() < int(s.totalLayers) {
		graphSize = graphPartialOffload
	}
Jesse Gross's avatar
Jesse Gross committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
	// For all layers that we have assigned to GPUs, move them in the memory data so
	// that it is reported accurately
	for _, gl := range gpuLayers {
		for i := range s.mem.GPUs {
			if gl.DeviceID == s.mem.GPUs[i].DeviceID {
				for _, l := range gl.Layers {
					s.mem.GPUs[i].Weights[l] = s.mem.CPU.Weights[l]
					s.mem.GPUs[i].Cache[l] = s.mem.CPU.Cache[l]

					s.mem.CPU.Weights[l] = 0
					s.mem.CPU.Cache[l] = 0
				}

				s.mem.GPUs[i].Graph = graphSize
				break
			}
Jesse Gross's avatar
Jesse Gross committed
607
608
609
		}
	}

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
	if projectorGPU > 0 && len(s.mem.GPUs[projectorGPU].Weights) > 0 {
		s.mem.GPUs[projectorGPU].Weights[s.totalLayers-1] += projectorWeights
	}

	slog.Debug("memory", "estimate", s.mem)
	s.mem.Log(slog.LevelInfo)

	// The llama engine uses mmap by default
	s.loadRequest.UseMmap = true

	// mmap has issues with partial offloading on metal
	for _, g := range gpus {
		if g.Library == "Metal" &&
			uint64(s.options.NumGPU) > 0 &&
			uint64(s.options.NumGPU) < s.totalLayers {
			s.options.UseMMap = new(bool)
			*s.options.UseMMap = false
		}
	}

	// Windows CUDA should not use mmap for best performance
	// Linux  with a model larger than free space, mmap leads to thrashing
	// For CPU loads we want the memory to be allocated, not FS cache
	if (runtime.GOOS == "windows" && len(gpus) > 0 && gpus[0].Library == "CUDA" && s.options.UseMMap == nil) ||
		(runtime.GOOS == "linux" && systemInfo.FreeMemory < s.TotalSize() && s.options.UseMMap == nil) ||
		(len(gpus) == 0 && s.options.UseMMap == nil) ||
		(len(gpus) > 0 && gpus[0].Library == "Vulkan" && s.options.UseMMap == nil) ||
		(s.options.UseMMap != nil && !*s.options.UseMMap) {
		s.loadRequest.UseMmap = false
	}

Jesse Gross's avatar
Jesse Gross committed
641
	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
642
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
643
644
	}

645
	s.loadRequest.GPULayers = gpuLayers
Jesse Gross's avatar
Jesse Gross committed
646
647
	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
648
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
649
650
651
	}

	if !resp.Success {
652
		return nil, errors.New("failed to allocate memory for model")
Jesse Gross's avatar
Jesse Gross committed
653
654
655
656
657
	}

	// The llama engine does its memory allocations together with model loading, so we
	// need to wait until it is done to ensure that we have accurate memory data before
	// loading the next model
658
	return uniqueDeviceIDs(s.loadRequest.GPULayers), s.WaitUntilRunning(ctx)
Jesse Gross's avatar
Jesse Gross committed
659
660
}

661
662
663
664
func projectorMemoryRequirements(filename string) (weights uint64) {
	file, err := os.Open(filename)
	if err != nil {
		return 0
Jesse Gross's avatar
Jesse Gross committed
665
	}
666
	defer file.Close()
Jesse Gross's avatar
Jesse Gross committed
667

668
669
670
	ggml, err := ggml.Decode(file, 1024)
	if err != nil {
		return 0
Jesse Gross's avatar
Jesse Gross committed
671
672
	}

673
674
	for _, layer := range ggml.Tensors().GroupLayers() {
		weights += layer.Size()
Jesse Gross's avatar
Jesse Gross committed
675
676
	}

677
	return weights
Jesse Gross's avatar
Jesse Gross committed
678
679
680
681
682
683
684
685
686
687
688
}

// Load finds the optimal layout of layers to offload on GPUs based on no initial information about the size of the model
// It does this by:
// 1. Assigning the full model to the GPU with the largest available free memory
// 2. Attempting to allocate the layout and receiving the memory requirements in response
// 3. Creating a new layout based on the updated memory information
// 4. Going back to step 2 and looping until we either stabilize on a particular layout or discover that we have entered a cycle
//
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
// allowing for faster iteration, but may return less information.
689
690
//
// Returns the list of GPU IDs that were used in the final allocation on success
691
func (s *ollamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
Jesse Gross's avatar
Jesse Gross committed
692
693
694
695
696
	var success bool
	defer func() {
		if !success {
			s.initModel(ctx, LoadRequest{}, LoadOperationClose)
		}
697
698
699
		if s.mem != nil {
			s.mem.Log(slog.LevelInfo)
		}
Jesse Gross's avatar
Jesse Gross committed
700
701
702
703
704
705
706
707
708
	}()

	slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)

	pastAllocations := make(map[uint64]struct{})
	var backoff float32

	gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
	if err != nil {
709
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
710
711
712
	}

	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
713
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
714
715
716
717
718
719
720
721
722
	}

nextOperation:
	for operation := LoadOperationFit; operation < LoadOperationCommit; operation++ {
	nextLoad:
		for {
			s.loadRequest.GPULayers = gpuLayers
			resp, err := s.initModel(ctx, s.loadRequest, operation)
			if err != nil {
723
				return nil, err
Jesse Gross's avatar
Jesse Gross committed
724
725
726
727
728
729
730
731
732
733
734
			}

			resp.Memory.Log(slog.LevelDebug)
			slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

			pastAllocations[gpuLayers.Hash()] = struct{}{}
			s.mem = &resp.Memory

			for {
				newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
				if err != nil {
735
					return nil, err
Jesse Gross's avatar
Jesse Gross committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
				}

				slog.Debug("new layout created", "layers", newGPULayers)

				// We get additional memory information over time, which will reduce the number of
				// layers that can fit, so fewer layers is actually better. As long as we haven't seen
				// this layout before and it doesn't have more layers than the last one, we can keep
				// trying to see if we can do better.
				if _, ok := pastAllocations[newGPULayers.Hash()]; !ok && newGPULayers.Sum() <= gpuLayers.Sum() {
					gpuLayers = newGPULayers
					continue nextLoad
				}

				// If we are looping around a few different layouts due to graphs moving off and on
				// GPUs, make sure that we try out the intermediate states. For example, if we are
				// looping between offloading 39 and 41 layers, we should also check 40.
				//
				// This switches strategies to force an incremental number of layers to be offloaded
				// and checking the memory layout. If the allocation succeeds and creating a new layout
				// without forcing offload yields the same or greater number of layers offloaded, then
				// the trial is successful.
				//
				// This alternate strategy does not introduce the possibility of loops with the overall
				// state machine, as it exits this code block either with a successful result, moving
				// to the next operation or the original number of layers offloaded.
				if s.options.NumGPU < 0 && newGPULayers.Sum()-gpuLayers.Sum() > 1 {
					for i := newGPULayers.Sum() - 1; i >= gpuLayers.Sum(); i-- {
						slog.Debug("exploring intermediate layers", "layer", i)

						s.options.NumGPU = i
						newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
						s.options.NumGPU = -1
						if err != nil {
769
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
770
771
772
773
774
775
						}
						slog.Debug("new layout created", "layers", newGPULayers)

						s.loadRequest.GPULayers = newGPULayers
						resp, err = s.initModel(ctx, s.loadRequest, operation)
						if err != nil {
776
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
777
778
779
780
781
782
783
784
						}

						resp.Memory.Log(slog.LevelDebug)
						slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

						if resp.Success {
							verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
							if err != nil {
785
								return nil, err
Jesse Gross's avatar
Jesse Gross committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
							}

							slog.Debug("verifying layout", "layers", verifyGPULayers)

							if newGPULayers.Sum() <= verifyGPULayers.Sum() {
								gpuLayers = newGPULayers

								// Since we are going backwards (increasing the number of layers), ensure that
								// we can come back down if needed
								clear(pastAllocations)

								continue nextOperation
							}
						}
					}
				}

				// If we generated a layout a second time or go backwards, then we've converged. Use the last
				// layout before the repeat, which is already allocated.
				if resp.Success {
					continue nextOperation
				}

				if s.options.NumGPU >= 0 {
810
					return nil, fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
Jesse Gross's avatar
Jesse Gross committed
811
812
813
814
815
				}

				// Memory allocation failed even though we created a layout that we thought should
				// fit in available memory. This could happen if either our free memory reports
				// are incorrect or if available memory is changing between layout and allocation
816
				// time. Apply a backoff to try to find the real amount of available space.
Jesse Gross's avatar
Jesse Gross committed
817
818
				if backoff > 1 {
					slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
819
					return nil, errors.New("memory layout cannot be allocated")
Jesse Gross's avatar
Jesse Gross committed
820
				} else {
821
					backoff += 0.1
Jesse Gross's avatar
Jesse Gross committed
822
823
824
825
826
827
828
829
830
831
				}

				slog.Info("model layout did not fit, applying backoff", "backoff", fmt.Sprintf("%.2f", backoff))
			}
		}
	}

	s.loadRequest.GPULayers = gpuLayers
	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
832
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
833
834
835
836
837
838
839
	}

	success = resp.Success
	s.mem = &resp.Memory

	if !success {
		slog.Warn("failed to commit memory for model", "memory", resp.Memory)
840
		return nil, errors.New("failed to commit memory for model")
Jesse Gross's avatar
Jesse Gross committed
841
842
	}

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
	return uniqueDeviceIDs(gpuLayers), nil
}

func uniqueDeviceIDs(gpuLayers ml.GPULayersList) []ml.DeviceID {
	devices := []ml.DeviceID{}
	for _, layer := range gpuLayers {
		new := true
		for _, ID := range devices {
			if layer.DeviceID == ID {
				new = false
				break
			}
		}
		if new {
			devices = append(devices, layer.DeviceID)
		}
	}
	return devices
Jesse Gross's avatar
Jesse Gross committed
861
862
863
864
865
866
867
868
}

// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
// It does this by:
// - Calculating how much space each layer requires
// - Calculating how much space each GPU has available for layers, based on free memory and space occupied by the graph
// - Assigning layers
// - Ensuring that we don't exceed limits, such as requirements about partial offloading or system memory
869
func (s *llmServer) createLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, error) {
Jesse Gross's avatar
Jesse Gross committed
870
871
	if memory == nil {
		memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
872
873
			Weights: make([]uint64, s.totalLayers),
			Cache:   make([]uint64, s.totalLayers),
Jesse Gross's avatar
Jesse Gross committed
874
875
		}}
	}
876
	gpuLayers, layers := s.buildLayout(systemGPUs, memory, requireFull, backoff)
877
	err := s.verifyLayout(systemInfo, systemGPUs, memory, requireFull, gpuLayers, layers)
878
879
880
881
882
883
	if err != nil {
		return nil, err
	}
	return gpuLayers, nil
}

884
func (s *llmServer) buildLayout(systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, []uint64) {
885
886
	gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)
	sort.Sort(sort.Reverse(ml.ByFreeMemory(gpus)))
Jesse Gross's avatar
Jesse Gross committed
887
888
889
890

	layers := make([]uint64, len(memory.CPU.Weights))
	for i := range layers {
		for j := range memory.GPUs {
891
892
			layers[i] += memory.GPUs[j].Weights[i]
			layers[i] += memory.GPUs[j].Cache[i]
Jesse Gross's avatar
Jesse Gross committed
893
		}
894
895
		layers[i] += memory.CPU.Weights[i]
		layers[i] += memory.CPU.Cache[i]
896
		logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
Jesse Gross's avatar
Jesse Gross committed
897
898
899
	}

	gpuLayers := ml.GPULayersList{}
900
	for _, gl := range ml.ByLibrary(gpus) {
Jesse Gross's avatar
Jesse Gross committed
901
902
903
904
905
906
907
908
		// If a GPU already has a graph allocated on it, then we should continue to use it.
		// Otherwise, we lose information that we got from previous allocations, which can
		// cause cycling. Plus, we get more information about required allocation from each
		// iteration, so it doesn't make sense that a later iteration would use fewer GPUs.
		lastUsedGPU := 0
		for i := range gl {
			found := false
			for j := range memory.GPUs {
909
				if gl[i].DeviceID == memory.GPUs[j].DeviceID {
910
					if memory.GPUs[j].Graph != 0 {
Jesse Gross's avatar
Jesse Gross committed
911
912
913
						lastUsedGPU = i
					}

914
					reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory() + envconfig.GpuOverhead() + memory.GPUs[j].Graph
Jesse Gross's avatar
Jesse Gross committed
915
916
917
918
919
920
					if gl[i].FreeMemory > reserved {
						gl[i].FreeMemory -= reserved
					} else {
						gl[i].FreeMemory = 0
					}

921
					slog.Debug("available gpu", "id", gl[i].ID, "library", gl[i].Library,
Jesse Gross's avatar
Jesse Gross committed
922
						"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
923
						"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory()),
Jesse Gross's avatar
Jesse Gross committed
924
						"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
925
						"graph", format.HumanBytes2(memory.GPUs[j].Graph))
Jesse Gross's avatar
Jesse Gross committed
926
927
928
929
930
931
932
933
934
935
936

					found = true
					break
				}
			}
			if !found {
				// The runner doesn't report seeing this GPU
				gl[i].FreeMemory = 0
			}
		}

937
		libraryGpuLayers := assignLayers(layers, gl, requireFull, s.options.NumGPU, lastUsedGPU)
Jesse Gross's avatar
Jesse Gross committed
938
939
940
941
		if libraryGpuLayers.Sum() > gpuLayers.Sum() {
			gpuLayers = libraryGpuLayers
		}
	}
942
	return gpuLayers, layers
943
}
Jesse Gross's avatar
Jesse Gross committed
944

945
// verifyLayout ensures that we don't exceed limits, such as requirements about partial offloading or system memory
946
func (s *llmServer) verifyLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, gpuLayers ml.GPULayersList, layers []uint64) error {
Jesse Gross's avatar
Jesse Gross committed
947
	// These sizes will only increase as we go through additional iterations and get additional information.
948
	cpuSize := memory.InputWeights + memory.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
949
950
951
	var vramSize uint64
	for _, gl := range gpuLayers {
		for _, gpu := range memory.GPUs {
952
			if gl.DeviceID == gpu.DeviceID {
953
				vramSize += gpu.Graph
Jesse Gross's avatar
Jesse Gross committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
				break
			}
		}
	}

nextLayer:
	for i := range layers {
		for _, g := range gpuLayers {
			for _, gl := range g.Layers {
				if i == gl {
					vramSize += layers[i]
					continue nextLayer
				}
			}
		}
		cpuSize += layers[i]
	}

	if requireFull {
973
974
		if len(systemGPUs) > 0 && gpuLayers.Sum() < len(layers) && (s.options.NumGPU < 0 || gpuLayers.Sum() < s.options.NumGPU) {
			slog.Info("model requires more gpu memory than is currently available, evicting a model to make space", "loaded layers", gpuLayers.Sum())
975
			return ErrLoadRequiredFull
Jesse Gross's avatar
Jesse Gross committed
976
977
		}

978
		if cpuSize > systemInfo.FreeMemory {
979
980
			slog.Info("model requires more system memory than is currently available, evicting a model to make space", "required", cpuSize, "free", systemInfo.FreeMemory)
			return fmt.Errorf("model requires more system memory than is currently available %w", ErrLoadRequiredFull)
Jesse Gross's avatar
Jesse Gross committed
981
982
983
984
985
986
		}
	}

	// On linux and windows, over-allocating CPU memory will almost always result in an error
	// Darwin has fully dynamic swap so has no direct concept of free swap space
	if runtime.GOOS != "darwin" {
987
		available := systemInfo.FreeMemory + systemInfo.FreeSwap
Jesse Gross's avatar
Jesse Gross committed
988
		if cpuSize > available {
989
990
			slog.Warn("model request too large for system", "requested", format.HumanBytes2(cpuSize), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.TotalMemory), "free", format.HumanBytes2(systemInfo.FreeMemory), "swap", format.HumanBytes2(systemInfo.FreeSwap))
			return fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(cpuSize), format.HumanBytes2(available))
Jesse Gross's avatar
Jesse Gross committed
991
992
		}
	} else {
993
		if vramSize > systemInfo.TotalMemory {
Jesse Gross's avatar
Jesse Gross committed
994
995
996
997
998
999
1000
			// disable partial offloading when model is greater than total system memory as this
			// can lead to locking up the system
			s.options.NumGPU = 0
			gpuLayers = ml.GPULayersList{}
		}
	}

1001
	if len(systemGPUs) > 0 && gpuLayers.Sum() == 0 {
Jesse Gross's avatar
Jesse Gross committed
1002
1003
1004
		slog.Debug("insufficient VRAM to load any model layers")
	}

1005
	return nil
Jesse Gross's avatar
Jesse Gross committed
1006
1007
1008
}

// assignLayers packs the maximum number of layers onto the smallest set of GPUs and comes up with a layer assignment
1009
func assignLayers(layers []uint64, gpus []ml.DeviceInfo, requireFull bool, requestedLayers int, lastUsedGPU int) (gpuLayers ml.GPULayersList) {
1010
1011
1012
1013
1014
1015
1016
	// If the user is manually overriding parameters, treat all GPUs equally so they split according to VRAM
	if requestedLayers >= 0 || envconfig.SchedSpread() {
		for i := range gpus {
			gpus[i].Integrated = false
		}
	}

Jesse Gross's avatar
Jesse Gross committed
1017
1018
1019
1020
1021
1022
1023
1024
	// If we can't fit everything then prefer offloading layers other than the output layer
	for range 2 {
		// requestedLayers may be -1 if nothing was requested
		requestedLayers = min(len(layers), requestedLayers)

		if !envconfig.SchedSpread() {
			for i := lastUsedGPU; i < len(gpus); i++ {
				// Try to pack things into as few GPUs as possible
1025
				forceRequest := i == len(gpus)-1 && !requireFull
Jesse Gross's avatar
Jesse Gross committed
1026
1027
1028
1029
1030
1031
				gpuLayers = findBestFit(layers, gpus[:i+1], requestedLayers, forceRequest)
				if gpuLayers.Sum() == len(layers) || gpuLayers.Sum() == requestedLayers {
					break
				}
			}
		} else {
1032
			gpuLayers = findBestFit(layers, gpus, requestedLayers, !requireFull)
Jesse Gross's avatar
Jesse Gross committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
		}

		// We only stop if we've gotten all of the layers - even if we got requestedLayers, we still
		// might want to try dropping the output layer.
		if gpuLayers.Sum() == len(layers) {
			return gpuLayers
		}

		layers = layers[:len(layers)-1]
	}

	return gpuLayers
}

// findBestFit binary searches to find the smallest capacity factor that can fit
// the max number of layers. The capacity factor is multiplied by the free space on
1049
1050
// each GPU and a small one will force even balancing. Higher performance GPUs are
// used first.
1051
func findBestFit(layers []uint64, gpus []ml.DeviceInfo, requestedLayers int, forceRequest bool) (gpuLayers ml.GPULayersList) {
1052
1053
1054
	for _, gl := range ml.ByPerformance(gpus) {
		var high float32 = 1
		var low float32 = 0
Jesse Gross's avatar
Jesse Gross committed
1055

1056
1057
1058
1059
		// If we need to fulfill the requested number of layers, pretend we have almost infinite VRAM
		if requestedLayers >= 0 && forceRequest {
			high = 1000
		}
Jesse Gross's avatar
Jesse Gross committed
1060

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
		bestAssignments := greedyFit(layers, gl, high, requestedLayers)
		maxNumGPU := bestAssignments.Sum()

		for high-low > 1e-6 {
			mid := (low + high) / 2
			assignments := greedyFit(layers, gl, mid, requestedLayers)
			if assignments.Sum() == maxNumGPU {
				high = mid
				bestAssignments = assignments
			} else {
				low = mid
			}
Jesse Gross's avatar
Jesse Gross committed
1073
		}
1074
1075
1076
1077

		layers = layers[:len(layers)-bestAssignments.Sum()]
		requestedLayers -= bestAssignments.Sum()
		gpuLayers = append(bestAssignments, gpuLayers...)
Jesse Gross's avatar
Jesse Gross committed
1078
	}
1079
1080

	return gpuLayers
Jesse Gross's avatar
Jesse Gross committed
1081
1082
1083
}

// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
1084
func greedyFit(layers []uint64, gpus []ml.DeviceInfo, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
Jesse Gross's avatar
Jesse Gross committed
1085
	device := len(gpus) - 1
1086
	gpuLayers = ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}
Jesse Gross's avatar
Jesse Gross committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
	freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
	for i := len(layers) - 1; i >= 0; i-- {
		if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
			break
		}

		for {
			if layers[i] <= freeSpace {
				gpuLayers[0].Layers = append([]int{i}, gpuLayers[0].Layers...)
				freeSpace -= layers[i]
				break
			}

			device--
			if device < 0 {
				return gpuLayers
			}
1104
			gpuLayers = append(ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}, gpuLayers...)
Jesse Gross's avatar
Jesse Gross committed
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
			freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
		}
	}
	return gpuLayers
}

// waitUntilRunnerLaunched sleeps until the runner subprocess is alive enough
// to respond to status requests
func (s *llmServer) waitUntilRunnerLaunched(ctx context.Context) error {
	for {
		_, err := s.getServerStatus(ctx)
		if err == nil {
			break
		}

		t := time.NewTimer(10 * time.Millisecond)
		select {
		case <-t.C:
			continue
		case <-ctx.Done():
			return ctx.Err()
		}
	}

	return nil
}

// initModel sends a load request to the runner based on the request operation (fit, alloc, commit)
// and parameters
func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation LoadOperation) (*LoadResponse, error) {
	req.Operation = operation

	data, err := json.Marshal(req)
	if err != nil {
		return nil, fmt.Errorf("error marshaling load data: %w", err)
	}

	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/load", s.port), bytes.NewBuffer(data))
	if err != nil {
		return nil, fmt.Errorf("error creating load request: %w", err)
	}
	r.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(r)
	if err != nil {
		return nil, fmt.Errorf("do load request: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return nil, fmt.Errorf("read load request: %w", err)
	}

	if resp.StatusCode >= 400 {
		log.Printf("llm load error: %s", body)
		return nil, fmt.Errorf("%s", body)
	}

	var llmResp LoadResponse
	if err := json.Unmarshal(body, &llmResp); err != nil {
		return nil, fmt.Errorf("load unmarshal encode response: %w", err)
	}

	return &llmResp, nil
1170
1171
1172
1173
1174
1175
}

type ServerStatus int

const ( // iota is reset to 0
	ServerStatusReady ServerStatus = iota
1176
	ServerStatusNoSlotsAvailable
Jesse Gross's avatar
Jesse Gross committed
1177
	ServerStatusLaunched
1178
1179
1180
1181
1182
	ServerStatusLoadingModel
	ServerStatusNotResponding
	ServerStatusError
)

1183
func (s ServerStatus) String() string {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1184
1185
1186
	switch s {
	case ServerStatusReady:
		return "llm server ready"
1187
	case ServerStatusNoSlotsAvailable:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1188
		return "llm busy - no slots available"
Jesse Gross's avatar
Jesse Gross committed
1189
1190
	case ServerStatusLaunched:
		return "llm server launched"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
	case ServerStatusLoadingModel:
		return "llm server loading model"
	case ServerStatusNotResponding:
		return "llm server not responding"
	default:
		return "llm server error"
	}
}

1200
1201
1202
type ServerStatusResponse struct {
	Status   ServerStatus `json:"status"`
	Progress float32      `json:"progress"`
1203
1204
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1205
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
1206
1207
1208
1209
1210
1211
	// Fail fast if its exited
	if s.cmd.ProcessState != nil {
		msg := ""
		if s.status != nil && s.status.LastErrMsg != "" {
			msg = s.status.LastErrMsg
		}
1212
1213
		if s.cmd.ProcessState.ExitCode() == -1 {
			// Most likely a signal killed it, log some more details to try to help troubleshoot
1214
			slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
1215
		}
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
		return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
	}

	req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
	if err != nil {
		return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
	}
	req.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(req)
	if err != nil {
		if errors.Is(err, context.DeadlineExceeded) {
Michael Yang's avatar
Michael Yang committed
1228
			return ServerStatusNotResponding, errors.New("server not responding")
1229
		}
1230
1231
1232
		if strings.Contains(err.Error(), "connection refused") {
			return ServerStatusNotResponding, errors.New("connection refused")
		}
1233
1234
1235
1236
1237
1238
1239
1240
1241
		return ServerStatusError, fmt.Errorf("health resp: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return ServerStatusError, fmt.Errorf("read health request: %w", err)
	}

1242
1243
	var ssr ServerStatusResponse
	if err := json.Unmarshal(body, &ssr); err != nil {
1244
1245
1246
		return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
	}

1247
1248
1249
1250
	switch ssr.Status {
	case ServerStatusLoadingModel:
		s.loadProgress = ssr.Progress
		return ssr.Status, nil
Jesse Gross's avatar
Jesse Gross committed
1251
	case ServerStatusLaunched, ServerStatusReady, ServerStatusNoSlotsAvailable:
1252
		return ssr.Status, nil
1253
	default:
1254
		return ssr.Status, fmt.Errorf("server error: %+v", ssr)
1255
1256
1257
	}
}

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
	var retries int
	for {
		status, err := s.getServerStatus(ctx)
		if err != nil {
			return status, err
		}

		if status == ServerStatusNoSlotsAvailable {
			if retries >= 10 {
				return status, fmt.Errorf("no slots available after %d retries", retries)
			}

			time.Sleep(5 * time.Millisecond)
			retries++
			continue
		}

		return status, nil
	}
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1281
func (s *llmServer) Ping(ctx context.Context) error {
1282
1283
1284
1285
1286
1287
1288
1289
	_, err := s.getServerStatus(ctx)
	if err != nil {
		slog.Debug("server unhealthy", "error", err)
		return err
	}
	return nil
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1290
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
1291
	stallDuration := envconfig.LoadTimeout()    // If no progress happens
1292
	stallTimer := time.Now().Add(stallDuration) // give up if we stall
1293
1294
1295

	slog.Info("waiting for llama runner to start responding")
	var lastStatus ServerStatus = -1
1296
	fullyLoaded := false
ManniX-ITA's avatar
ManniX-ITA committed
1297

1298
1299
	for {
		select {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1300
		case <-ctx.Done():
1301
			slog.Warn("client connection closed before server finished loading, aborting load")
1302
			return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
1303
		case err := <-s.done:
1304
			return fmt.Errorf("llama runner process has terminated: %w", err)
1305
1306
		default:
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1307
		if time.Now().After(stallTimer) {
ManniX-ITA's avatar
ManniX-ITA committed
1308
			// timeout
1309
1310
1311
1312
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1313
			return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
ManniX-ITA's avatar
ManniX-ITA committed
1314
1315
1316
1317
1318
		}
		if s.cmd.ProcessState != nil {
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1319
			}
ManniX-ITA's avatar
ManniX-ITA committed
1320
1321
			return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1322
1323
		ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
		defer cancel()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1324
		priorProgress := s.loadProgress
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1325
1326
1327
		status, _ := s.getServerStatus(ctx)
		if lastStatus != status && status != ServerStatusReady {
			// Only log on status changes
1328
			slog.Info("waiting for server to become available", "status", status)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1329
		}
ManniX-ITA's avatar
ManniX-ITA committed
1330
1331
		switch status {
		case ServerStatusReady:
Jesse Gross's avatar
Jesse Gross committed
1332
			slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", time.Since(s.loadStart).Seconds()))
ManniX-ITA's avatar
ManniX-ITA committed
1333
1334
			return nil
		default:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1335
			lastStatus = status
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1336
1337
1338
1339
			// Reset the timer as long as we're making forward progress on the load
			if priorProgress != s.loadProgress {
				slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
				stallTimer = time.Now().Add(stallDuration)
1340
			} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
1341
				slog.Debug("model load completed, waiting for server to become available", "status", status)
1342
				stallTimer = time.Now().Add(stallDuration)
1343
				fullyLoaded = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1344
			}
ManniX-ITA's avatar
ManniX-ITA committed
1345
1346
			time.Sleep(time.Millisecond * 250)
			continue
1347
1348
1349
1350
		}
	}
}

1351
1352
1353
1354
1355
1356
1357
func (s *llmServer) Pid() int {
	if s.cmd != nil && s.cmd.Process != nil {
		return s.cmd.Process.Pid
	}
	return -1
}

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
func (s *llmServer) GetPort() int {
	return s.port
}

func (s *llmServer) HasExited() bool {
	if s.cmd != nil && s.cmd.ProcessState != nil && s.cmd.ProcessState.ExitCode() >= 0 {
		return true
	}
	return false
}

1369
var grammarJSON = `
1370
1371
1372
1373
root   ::= object
value  ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
  "{" ws (
1374
         string ":" ws value
1375
    ("," ws string ":" ws value)*
1376
  )? ws "}" 
1377
1378
1379
1380
array  ::=
  "[" ws (
            value
    ("," ws value)*
1381
  )? ws "]" 
1382
1383
string ::=
  "\"" (
1384
    [^"\\\x7F\x00-\x1F] |
1385
    "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
1386
1387
  )* "\"" 
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? 
1388
1389
1390
1391
1392
1393
1394
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`

const maxBufferSize = 512 * format.KiloByte

type ImageData struct {
1395
1396
	Data []byte `json:"data"`
	ID   int    `json:"id"`
1397
1398
1399
1400
}

type CompletionRequest struct {
	Prompt  string
1401
	Format  json.RawMessage
1402
	Images  []ImageData
Michael Yang's avatar
Michael Yang committed
1403
	Options *api.Options
1404

1405
1406
1407
	Grammar  string // set before sending the request to the subprocess
	Shift    bool
	Truncate bool
1408
1409
1410
1411
1412
1413

	// Logprobs specifies whether to include log probabilities in the response
	Logprobs bool

	// TopLogprobs specifies the number of most likely alternative tokens to return (0-20)
	TopLogprobs int
1414
1415
}

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
// DoneReason represents the reason why a completion response is done
type DoneReason int

const (
	// DoneReasonStop indicates the completion stopped naturally
	DoneReasonStop DoneReason = iota
	// DoneReasonLength indicates the completion stopped due to length limits
	DoneReasonLength
	// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
	DoneReasonConnectionClosed
)

func (d DoneReason) String() string {
	switch d {
	case DoneReasonLength:
		return "length"
	case DoneReasonStop:
		return "stop"
	default:
		return "" // closed
	}
}

1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
// TokenLogprob represents log probability information for a single token alternative.
type TokenLogprob struct {
	Token   string  `json:"token"`
	Logprob float64 `json:"logprob"`
}

// Logprob contains log probability information for a generated token.
type Logprob struct {
	TokenLogprob
	TopLogprobs []TokenLogprob `json:"top_logprobs,omitempty"`
}

1451
type CompletionResponse struct {
1452
1453
1454
1455
1456
1457
1458
	Content            string        `json:"content"`
	DoneReason         DoneReason    `json:"done_reason"`
	Done               bool          `json:"done"`
	PromptEvalCount    int           `json:"prompt_eval_count"`
	PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
	EvalCount          int           `json:"eval_count"`
	EvalDuration       time.Duration `json:"eval_duration"`
1459
1460
1461

	// Logprobs contains log probability information if requested
	Logprobs []Logprob `json:"logprobs,omitempty"`
1462
1463
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1464
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
1465
	slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
1466
	logutil.Trace("completion request", "prompt", req.Prompt)
1467

1468
	if len(req.Format) > 0 {
1469
1470
1471
1472
1473
1474
		switch string(req.Format) {
		case `null`, `""`:
			// Field was set, but "missing" a value. We accept
			// these as "not set".
			break
		case `"json"`:
1475
			req.Grammar = grammarJSON
1476
1477
1478
1479
		default:
			if req.Format[0] != '{' {
				return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
			}
1480

1481
1482
1483
1484
			// User provided a JSON schema
			g := llama.SchemaToGrammar(req.Format)
			if g == nil {
				return fmt.Errorf("invalid JSON schema in format")
1485
			}
1486
			req.Grammar = string(g)
1487
1488
1489
		}
	}

1490
1491
1492
1493
1494
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
	if err := s.sem.Acquire(ctx, 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
		return err
	}
	defer s.sem.Release(1)

	// put an upper limit on num_predict to avoid the model running on forever
	if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
		req.Options.NumPredict = 10 * s.options.NumCtx
	}

1510
	// Make sure the server is ready
1511
	status, err := s.getServerStatusRetry(ctx)
1512
1513
1514
	if err != nil {
		return err
	} else if status != ServerStatusReady {
1515
		return fmt.Errorf("unexpected server status: %s", status)
1516
1517
	}

1518
1519
1520
1521
	// Handling JSON marshaling with special characters unescaped.
	buffer := &bytes.Buffer{}
	enc := json.NewEncoder(buffer)
	enc.SetEscapeHTML(false)
1522

1523
	if err := enc.Encode(req); err != nil {
1524
1525
		return fmt.Errorf("failed to marshal data: %v", err)
	}
1526

1527
1528
1529
1530
1531
1532
	endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
	serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
	if err != nil {
		return fmt.Errorf("error creating POST request: %v", err)
	}
	serverReq.Header.Set("Content-Type", "application/json")
1533

1534
	res, err := http.DefaultClient.Do(serverReq)
1535
1536
1537
1538
	if err != nil && errors.Is(err, context.Canceled) {
		// client closed connection
		return err
	} else if err != nil {
1539
1540
		slog.Error("post predict", "error", err)
		return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
1541
1542
	}
	defer res.Body.Close()
1543

1544
1545
	if res.StatusCode >= 400 {
		bodyBytes, err := io.ReadAll(res.Body)
1546
		if err != nil {
1547
			return fmt.Errorf("failed reading llm error response: %w", err)
1548
		}
1549
		log.Printf("llm predict error: %s", bodyBytes)
1550
		return api.StatusError{StatusCode: res.StatusCode, ErrorMessage: strings.TrimSpace(string(bodyBytes))}
1551
	}
1552

1553
1554
1555
	scanner := bufio.NewScanner(res.Body)
	buf := make([]byte, 0, maxBufferSize)
	scanner.Buffer(buf, maxBufferSize)
1556

1557
1558
1559
	// keep track of the last token generated, this is used to abort if the model starts looping
	var lastToken string
	var tokenRepeat int
1560

1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
	for scanner.Scan() {
		select {
		case <-ctx.Done():
			// This handles the request cancellation
			return ctx.Err()
		default:
			line := scanner.Bytes()
			if len(line) == 0 {
				continue
			}
1571

1572
1573
			evt, ok := bytes.CutPrefix(line, []byte("data: "))
			if !ok {
1574
				evt = line
1575
			}
1576

1577
			var c CompletionResponse
1578
			if err := json.Unmarshal(evt, &c); err != nil {
1579
				return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
1580
1581
			}
			switch {
1582
			case strings.TrimSpace(c.Content) == lastToken:
1583
1584
1585
1586
1587
				tokenRepeat++
			default:
				lastToken = strings.TrimSpace(c.Content)
				tokenRepeat = 0
			}
1588

1589
1590
1591
1592
1593
			// 30 picked as an arbitrary max token repeat limit, modify as needed
			if tokenRepeat > 30 {
				slog.Debug("prediction aborted, token repeat limit reached")
				return ctx.Err()
			}
1594

1595
1596
			if c.Content != "" {
				fn(CompletionResponse{
1597
1598
					Content:  c.Content,
					Logprobs: c.Logprobs,
1599
				})
1600
			}
1601

1602
			if c.Done {
1603
				fn(c)
1604
				return nil
1605
			}
1606
		}
1607
	}
1608

1609
	if err := scanner.Err(); err != nil {
1610
		if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
1611
			s.Close()
1612
			var msg string
1613
1614
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1615
1616
			} else {
				msg = err.Error()
1617
			}
1618
			return fmt.Errorf("an error was encountered while running the model: %s", msg)
1619
1620
		}

1621
		return fmt.Errorf("error reading llm response: %v", err)
1622
1623
	}

1624
	return nil
1625
1626
}

1627
type EmbeddingRequest struct {
1628
	Content string `json:"content"`
1629
1630
}

1631
type EmbeddingResponse struct {
1632
	Embedding []float32 `json:"embedding"`
1633
1634
}

1635
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
1636
	logutil.Trace("embedding request", "input", input)
1637

1638
	if err := s.sem.Acquire(ctx, 1); err != nil {
1639
1640
1641
1642
1643
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
1644
		return nil, err
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1645
	}
1646
	defer s.sem.Release(1)
1647

1648
	// Make sure the server is ready
1649
	status, err := s.getServerStatusRetry(ctx)
1650
	if err != nil {
1651
		return nil, err
1652
	} else if status != ServerStatusReady {
1653
		return nil, fmt.Errorf("unexpected server status: %s", status)
1654
1655
	}

1656
	data, err := json.Marshal(EmbeddingRequest{Content: input})
Michael Yang's avatar
Michael Yang committed
1657
	if err != nil {
1658
		return nil, fmt.Errorf("error marshaling embed data: %w", err)
1659
1660
	}

1661
	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
1662
	if err != nil {
1663
		return nil, fmt.Errorf("error creating embed request: %w", err)
1664
	}
1665
	r.Header.Set("Content-Type", "application/json")
1666

1667
	resp, err := http.DefaultClient.Do(r)
1668
	if err != nil {
1669
		return nil, fmt.Errorf("do embedding request: %w", err)
1670
1671
1672
1673
1674
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
1675
		return nil, fmt.Errorf("error reading embed response: %w", err)
1676
1677
1678
	}

	if resp.StatusCode >= 400 {
1679
		log.Printf("llm embedding error: %s", body)
1680
		return nil, fmt.Errorf("%s", body)
1681
1682
	}

1683
	var e EmbeddingResponse
1684
	if err := json.Unmarshal(body, &e); err != nil {
1685
		return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
1686
1687
	}

1688
	return e.Embedding, nil
1689
1690
}

1691
func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
1692
1693
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()
1694

1695
1696
	if s.llamaModel == nil {
		return nil, fmt.Errorf("no tokenizer configured")
Michael Yang's avatar
Michael Yang committed
1697
1698
	}

1699
	return s.llamaModel.Tokenize(content, false, true)
Michael Yang's avatar
Michael Yang committed
1700
1701
}

1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
	tokens, err := s.textProcessor.Encode(content, false)
	if err != nil {
		return nil, err
	}

	toks := make([]int, len(tokens))
	for i, t := range tokens {
		toks[i] = int(t)
	}

	return toks, nil
1714
1715
}

1716
func (s *llamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
1717
1718
1719
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()

1720
1721
	if s.llamaModel == nil {
		return "", fmt.Errorf("no tokenizer configured")
1722
	}
1723
1724
1725
1726

	var resp string
	for _, token := range tokens {
		resp += s.llamaModel.TokenToPiece(token)
Michael Yang's avatar
Michael Yang committed
1727
	}
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743

	return resp, nil
}

func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
	toks := make([]int32, len(tokens))
	for i, t := range tokens {
		toks[i] = int32(t)
	}

	content, err := s.textProcessor.Decode(toks)
	if err != nil {
		return "", err
	}

	return content, nil
1744
1745
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1746
func (s *llmServer) Close() error {
1747
1748
1749
1750
	s.llamaModelLock.Lock()
	if s.llamaModel != nil {
		llama.FreeModel(s.llamaModel)
		s.llamaModel = nil
1751
	}
1752
	s.llamaModelLock.Unlock()
1753

1754
	if s.cmd != nil {
1755
		slog.Debug("stopping llama server", "pid", s.Pid())
1756
1757
1758
		if err := s.cmd.Process.Kill(); err != nil {
			return err
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1759
1760
		// if ProcessState is already populated, Wait already completed, no need to wait again
		if s.cmd.ProcessState == nil {
1761
			slog.Debug("waiting for llama server to exit", "pid", s.Pid())
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1762
1763
			<-s.done
		}
1764

1765
		slog.Debug("llama server stopped", "pid", s.Pid())
1766
1767
1768
1769
1770
	}

	return nil
}

1771
1772
1773
1774
1775
func (s *llamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
	slog.Debug("llamarunner free vram reporting not supported")
	return nil
}

1776
func (s *llmServer) VRAMSize() uint64 {
Jesse Gross's avatar
Jesse Gross committed
1777
1778
1779
1780
1781
1782
1783
	if s.mem == nil {
		return 0
	}

	var mem uint64

	for _, g := range s.mem.GPUs {
1784
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1785
1786
1787
1788
1789
1790
	}

	// Some elements are always on CPU. However, if we have allocated all layers
	// on the GPU then include the CPU components as well, to represent complete offloading.
	noCPULayers := true
	for i := range s.mem.CPU.Weights {
1791
		if s.mem.CPU.Weights[i] != 0 || s.mem.CPU.Cache[i] != 0 {
Jesse Gross's avatar
Jesse Gross committed
1792
1793
1794
1795
1796
			noCPULayers = false
			break
		}
	}
	if noCPULayers {
1797
1798
		mem += s.mem.InputWeights
		mem += s.mem.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
1799
1800
1801
1802
1803
	}

	return mem
}

1804
func (s *llmServer) TotalSize() uint64 {
Jesse Gross's avatar
Jesse Gross committed
1805
1806
1807
1808
	if s.mem == nil {
		return 0
	}

1809
1810
	mem := s.mem.InputWeights
	mem += s.mem.CPU.Size()
Jesse Gross's avatar
Jesse Gross committed
1811
	for _, g := range s.mem.GPUs {
1812
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1813
1814
1815
1816
1817
	}

	return mem
}

1818
func (s *llmServer) VRAMByGPU(id ml.DeviceID) uint64 {
Jesse Gross's avatar
Jesse Gross committed
1819
1820
1821
1822
1823
	if s.mem == nil {
		return 0
	}

	for _, g := range s.mem.GPUs {
1824
		if g.DeviceID == id {
1825
			return g.Size()
Jesse Gross's avatar
Jesse Gross committed
1826
1827
1828
1829
1830
		}
	}

	return 0
}
1831
1832

func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
1833
	devices, err := ml.GetDevicesFromRunner(ctx, s)
1834
1835
1836
1837
1838
1839
1840
1841
1842
	if err != nil {
		if s.cmd != nil && s.cmd.ProcessState == nil {
			// Still running but hit an error, log
			slog.Debug("failure refreshing GPU information", "error", err)
		}
		// else no longer running so suppress logging as a failure is expected
	}
	return devices
}