model_vision.go 8.57 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
package mllama

import (
	"math"
	"slices"

7
	"github.com/ollama/ollama/fs"
Michael Yang's avatar
Michael Yang committed
8
9
10
11
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
)

12
var batchSize int = 1
Michael Yang's avatar
Michael Yang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

type VisionSelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_out"`

	Gate ml.Tensor `gguf:"attn_gate"`
}

func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	headDim := opts.hiddenSize / opts.numHeads

	query := sa.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)

	key := sa.Key.Forward(ctx, hiddenState)
	key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)

	value := sa.Value.Forward(ctx, hiddenState)
	value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.Mulmat(ctx, query)
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)

	hiddenState = sa.Output.Forward(ctx, attention)
	if sa.Gate != nil {
		hiddenState = hiddenState.Mul(ctx, sa.Gate)
	}

	return hiddenState
}

type VisionMLP struct {
	Down *nn.Linear `gguf:"ffn_down"`
	Up   *nn.Linear `gguf:"ffn_up"`

	Gate ml.Tensor `gguf:"ffn_gate"`
}

func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
	hiddenState = mlp.Up.Forward(ctx, hiddenState)
	if mlp.Gate != nil {
		hiddenState = hiddenState.Mul(ctx, mlp.Gate)
	}

	return hiddenState
}

type VisionEncoderLayer struct {
	AttentionNorm *nn.LayerNorm `gguf:"ln1"`
	SelfAttention *VisionSelfAttention

	MLPNorm *nn.LayerNorm `gguf:"ln2"`
	MLP     *VisionMLP
}

func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	residual := hiddenState

	// self attention
	hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	// feed forward
	hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

type VisionEncoder struct {
	Layers []VisionEncoderLayer
}

func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
	var intermediateHiddenStates []ml.Tensor
	for i, layer := range e.Layers {
		if slices.Contains(intermediateLayersIndices, uint32(i)) {
103
			intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
Michael Yang's avatar
Michael Yang committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
		}

		hiddenState = layer.Forward(ctx, hiddenState, opts)
	}

	return hiddenState, intermediateHiddenStates
}

type PrecomputedAspectRatioEmbedding struct {
	Embedding *nn.Embedding
	Gate      ml.Tensor `gguf:"gate"`
}

func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
	embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
	if e.Gate != nil {
		embeddings = embeddings.Mul(ctx, e.Gate)
	}

	return hiddenState.Add(ctx, embeddings)
}

type PrecomputedPositionEmbedding struct {
	PositionEmbedding     *nn.Embedding `gguf:"position_embd"`
	PositionEmbeddingGate ml.Tensor     `gguf:"position_embd.gate"`

	TilePositionEmbedding     *nn.Embedding `gguf:"tile_position_embd"`
	TilePositionEmbeddingGate ml.Tensor     `gguf:"tile_position_embd.gate"`
}

135
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
	positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
	if e.PositionEmbeddingGate != nil {
		positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
	}

	hiddenState = hiddenState.Add(ctx, positionEmbedding)

	tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
	tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
	if e.TilePositionEmbeddingGate != nil {
		tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
	}

	return hiddenState.Add(ctx, tilePositionEmbedding)
}

type VisionModelOptions struct {
153
	hiddenSize, numHeads, numTiles int
Michael Yang's avatar
Michael Yang committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
	imageSize, patchSize           int
	eps                            float32

	intermediateLayersIndices []uint32
}

type VisionModel struct {
	PatchEmbeddings *nn.Conv2D `gguf:"patch_embd"`

	PreTilePositionEmbedding  *PrecomputedAspectRatioEmbedding `gguf:"pre_tile_position_embd"`
	PostTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"post_tile_position_embd"`
	PositionEmbedding         *PrecomputedPositionEmbedding

	PreLayerNorm   *nn.LayerNorm `gguf:"pre_ln"`
	PostLayerNorm  *nn.LayerNorm `gguf:"post_ln"`
	ClassEmbedding ml.Tensor     `gguf:"class_embd"`

	Transformer       *VisionEncoder `gguf:"blk"`
	GlobalTransformer *VisionEncoder `gguf:"global.blk"`

	*VisionModelOptions
}

func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
178
	numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
Michael Yang's avatar
Michael Yang committed
179
180
181
182
183
184
185
186
187
188
	numPositions := numPatches
	if m.ClassEmbedding != nil {
		numPositions++
	}

	hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
	hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
	hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)

	hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
189
	hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
Michael Yang's avatar
Michael Yang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

	hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
	hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)

	numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
	hiddenState = hiddenState.Pad(ctx, 0, numPaddingPatches, 0, 0)

	hiddenState = hiddenState.Reshape(ctx, hiddenState.Dim(0), hiddenState.Dim(1)*hiddenState.Dim(2), batchSize)
	hiddenState, intermediateHiddenStates := m.Transformer.Forward(ctx, hiddenState, m.intermediateLayersIndices, m.VisionModelOptions)

	hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
	hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
	hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)

	hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
209
	hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
Michael Yang's avatar
Michael Yang committed
210
211
212
213
214
215
216
	hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
	hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
	return hiddenState.Concat(ctx, hiddenStates, 0)
}

217
func newVisionModel(c fs.Config) *VisionModel {
Michael Yang's avatar
Michael Yang committed
218
219
220
221
222
	return &VisionModel{
		Transformer:       &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
		GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},

		VisionModelOptions: &VisionModelOptions{
223
224
225
			hiddenSize: int(c.Uint("vision.embedding_length")),
			numHeads:   int(c.Uint("vision.attention.head_count")),
			numTiles:   int(c.Uint("vision.max_num_tiles")),
Michael Yang's avatar
Michael Yang committed
226
227
228
229
230
231
232
233
234
235

			imageSize: int(c.Uint("vision.image_size")),
			patchSize: int(c.Uint("vision.patch_size")),

			eps: c.Float("vision.attention.layer_norm_epsilon"),

			intermediateLayersIndices: c.Uints("vision.intermediate_layers_indices"),
		},
	}
}