model_test.go 4.2 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
package model

import (
	"reflect"
	"slices"
6
	"strings"
Michael Yang's avatar
Michael Yang committed
7
8
9
	"testing"

	"github.com/google/go-cmp/cmp"
10
11
	"github.com/ollama/ollama/fs"
	fsggml "github.com/ollama/ollama/fs/ggml"
Michael Yang's avatar
Michael Yang committed
12
13
14
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/backend/ggml"
	"github.com/ollama/ollama/ml/nn"
15
	"github.com/ollama/ollama/model/input"
Michael Yang's avatar
Michael Yang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
)

func TestParseTags(t *testing.T) {
	cases := []struct {
		value string
		want  Tag
	}{
		{
			value: "output",
			want: Tag{
				Name: "output",
			},
		},
		{
			value: "output,alt:token_embd",
			want: Tag{
				Name: "output",
				Alternate: []string{
					"token_embd",
				},
			},
		},
	}

	for _, tt := range cases {
		t.Run(tt.value, func(t *testing.T) {
			got := ParseTags(tt.value)
			if diff := cmp.Diff(tt.want, got); diff != "" {
				t.Errorf("ParseTags() returned unexpected values (-want +got):\n%s", diff)
			}
		})
	}
}

type fakeBackend struct {
	*ggml.Backend
	names []string
}

type fakeTensor struct {
	*ggml.Tensor
	Name string
}

func (m *fakeBackend) Get(name string) ml.Tensor {
	if slices.Contains(m.names, name) {
		return &fakeTensor{Name: name}
	}

	return nil
}

func TestPopulateFields(t *testing.T) {
	type fakeLayer struct {
		Query  *nn.Linear `gguf:"attn_q"`
		Key    *nn.Linear `gguf:"attn_k"`
		Value  *nn.Linear `gguf:"attn_v"`
		Output *nn.Linear `gguf:"attn_o"`
	}

	type fakeModel struct {
		Input      *nn.Embedding `gguf:"input"`
		OutputNorm *nn.RMSNorm   `gguf:"output_norm"`
		Output     *nn.Linear    `gguf:"output"`
		Layers     [2]fakeLayer  `gguf:"blk"`
	}

	var m fakeModel
	v := reflect.ValueOf(&m)
Jesse Gross's avatar
Jesse Gross committed
85
	v.Elem().Set(populateFields(Base{b: &fakeBackend{
Michael Yang's avatar
Michael Yang committed
86
87
88
89
90
91
92
93
94
95
96
		names: []string{
			"input.weight",
			"blk.0.attn_q.weight",
			"blk.0.attn_k.weight",
			"blk.0.attn_v.weight",
			"blk.1.attn_q.weight",
			"blk.1.attn_k.weight",
			"blk.1.attn_v.weight",
			"output_norm.weight",
			"output.weight",
		},
Jesse Gross's avatar
Jesse Gross committed
97
	}}, v.Elem()))
Michael Yang's avatar
Michael Yang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

	if diff := cmp.Diff(fakeModel{
		Input:      &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
		OutputNorm: &nn.RMSNorm{Weight: &fakeTensor{Name: "output_norm.weight"}},
		Output:     &nn.Linear{Weight: &fakeTensor{Name: "output.weight"}},
		Layers: [2]fakeLayer{
			{
				Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_q.weight"}},
				Key:   &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_k.weight"}},
				Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_v.weight"}},
			},
			{
				Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_q.weight"}},
				Key:   &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_k.weight"}},
				Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_v.weight"}},
			},
		},
	}, m); diff != "" {
		t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
	}
}

func TestPopulateFieldsAlternateName(t *testing.T) {
	type fakeModel struct {
		Input  *nn.Embedding `gguf:"input"`
		Output *nn.Linear    `gguf:"output,alt:input"`
	}

	m := fakeModel{}
	v := reflect.ValueOf(&m)
Jesse Gross's avatar
Jesse Gross committed
128
	v.Elem().Set(populateFields(Base{b: &fakeBackend{
Michael Yang's avatar
Michael Yang committed
129
130
131
		names: []string{
			"input.weight",
		},
Jesse Gross's avatar
Jesse Gross committed
132
	}}, v.Elem()))
Michael Yang's avatar
Michael Yang committed
133
134
135
136
137
138
139
140

	if diff := cmp.Diff(fakeModel{
		Input:  &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
		Output: &nn.Linear{Weight: &fakeTensor{Name: "input.weight"}},
	}, m); diff != "" {
		t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
	}
}
141
142

func TestGetTextProcessor(t *testing.T) {
143
	tp, err := getTextProcessor(fsggml.KV{})
144
145
146
147
148
149
150
151
	if err == nil {
		t.Error("expected error")
	} else if !strings.Contains(err.Error(), "unsupported model architecture") {
		t.Errorf("unexpected error: %v", err)
	} else if tp != nil {
		t.Error("expected nil tp")
	}

152
	models["dummy"] = func(fs.Config) (Model, error) {
153
154
		return notTextProcessorModel{}, nil
	}
155
	tp, err = getTextProcessor(fsggml.KV{"general.architecture": "dummy"})
156
157
158
159
160
161
162
163
164
165
166
	if err == nil {
		t.Error("expected error")
	} else if !strings.Contains(err.Error(), "not a TextProcessor") {
		t.Errorf("unexpected error: %v", err)
	} else if tp != nil {
		t.Error("expected nil tp")
	}
}

type notTextProcessorModel struct{}

Jesse Gross's avatar
Jesse Gross committed
167
func (notTextProcessorModel) Forward(ml.Context, input.Batch) (ml.Tensor, error) {
168
169
170
171
172
173
174
175
176
177
	panic("unimplemented")
}

func (notTextProcessorModel) Backend() ml.Backend {
	panic("unimplemented")
}

func (notTextProcessorModel) Config() config {
	panic("unimplemented")
}