privateGPT.py 2.85 KB
Newer Older
Jeffrey Morgan's avatar
Jeffrey Morgan committed
1
2
3
4
5
#!/usr/bin/env python3
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
Michael Chiang's avatar
Michael Chiang committed
6
from langchain.llms import Ollama
Jeffrey Morgan's avatar
Jeffrey Morgan committed
7
8
9
10
11
import os
import argparse
import time

model = os.environ.get("MODEL", "llama2-uncensored")
Michael Chiang's avatar
Michael Chiang committed
12
13
14
# For embeddings model, the example uses a sentence-transformers model
# https://www.sbert.net/docs/pretrained_models.html 
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
Jeffrey Morgan's avatar
Jeffrey Morgan committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))

from constants import CHROMA_SETTINGS

def main():
    # Parse the command line arguments
    args = parse_arguments()
    embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
    db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
    retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
    # activate/deactivate the streaming StdOut callback for LLMs
    callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]

    llm = Ollama(model=model, callbacks=callbacks)

    qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
    # Interactive questions and answers
    while True:
        query = input("\nEnter a query: ")
        if query == "exit":
            break
        if query.strip() == "":
            continue

        # Get the answer from the chain
        start = time.time()
        res = qa(query)
        answer, docs = res['result'], [] if args.hide_source else res['source_documents']
        end = time.time()

        # Print the result
        print("\n\n> Question:")
        print(query)
        print(answer)

        # Print the relevant sources used for the answer
        for document in docs:
            print("\n> " + document.metadata["source"] + ":")
            print(document.page_content)

def parse_arguments():
    parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
                                                 'using the power of LLMs.')
    parser.add_argument("--hide-source", "-S", action='store_true',
                        help='Use this flag to disable printing of source documents used for answers.')

    parser.add_argument("--mute-stream", "-M",
                        action='store_true',
                        help='Use this flag to disable the streaming StdOut callback for LLMs.')

    return parser.parse_args()


if __name__ == "__main__":
    main()