0005-solar-pro.patch 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:16 -0700
Subject: [PATCH] solar-pro

solar-pro introduces block skip connections where blocks are connected
to other, non-sequential blocks with a scale multiple

this change adds 4 new keys to store the skip connections and one new
tensor to store the scalar. the scalar is implemented a 1-dimensional
tensor with 2 elements dervied from the model's bskcn_tv configuration.
in general, the values are (bskcn_tv, 1 - bskcn_tv)
---
14
 src/llama-arch.cpp         |  21 +++++
15
16
 src/llama-arch.h           |   3 +
 src/llama-hparams.cpp      |   8 ++
17
 src/llama-hparams.h        |   5 ++
18
 src/llama-model-loader.cpp |   1 +
19
 src/llama-model.cpp        |  44 +++++++++++
20
 src/llama-model.h          |   3 +
21
22
 src/llama.cpp              | 152 ++++++++++++++++++++++++++++++++++++-
 8 files changed, 236 insertions(+), 1 deletion(-)
23

24
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
25
index 97a1e7e5..a1e0ebcc 100644
26
27
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
28
@@ -61,6 +61,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
29
30
31
32
33
34
     { LLM_ARCH_GRANITE,          "granite"          },
     { LLM_ARCH_GRANITE_MOE,      "granitemoe"       },
     { LLM_ARCH_CHAMELEON,        "chameleon"        },
+    { LLM_ARCH_SOLAR,            "solar"            },
     { LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
35
 };
36
37
38
39
40
@@ -125,6 +126,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
     { LLM_KV_ATTENTION_SLIDING_WINDOW,         "%s.attention.sliding_window"         },
     { LLM_KV_ATTENTION_SCALE,                  "%s.attention.scale"                  },
+    { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,  "%s.attention.block_skip_connection"  },
41
 
42
43
     { LLM_KV_ROPE_DIMENSION_COUNT,      "%s.rope.dimension_count"                 },
     { LLM_KV_ROPE_DIMENSION_SECTIONS,   "%s.rope.dimension_sections"              },
44
45
@@ -1271,6 +1273,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
         },
     },
+    {
+        LLM_ARCH_SOLAR,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_BSKCN_TV,        "bskcn_tv" },
+        },
+    },
     {
67
         LLM_ARCH_WAVTOKENIZER_DEC,
68
         {
69
@@ -1429,6 +1449,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
70
71
72
73
74
75
76
77
     {LLM_TENSOR_FFN_EXP_PROBS_B,            {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
     // this tensor is loaded for T5, but never used
     {LLM_TENSOR_DEC_CROSS_ATTN_REL_B,       {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
+    {LLM_TENSOR_BSKCN_TV,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
     {LLM_TENSOR_CONV1D,                     {LLM_TENSOR_LAYER_INPUT,     GGML_OP_IM2COL}},
     {LLM_TENSOR_POS_NET_NORM,               {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
     {LLM_TENSOR_POS_NET_NORM1,              {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
78
index 122fdceb..77919578 100644
79
80
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
81
@@ -65,6 +65,7 @@ enum llm_arch {
82
83
84
85
86
87
88
     LLM_ARCH_GRANITE,
     LLM_ARCH_GRANITE_MOE,
     LLM_ARCH_CHAMELEON,
+    LLM_ARCH_SOLAR,
     LLM_ARCH_WAVTOKENIZER_DEC,
     LLM_ARCH_UNKNOWN,
 };
89
@@ -129,6 +130,7 @@ enum llm_kv {
90
91
92
93
94
95
96
     LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
     LLM_KV_ATTENTION_SLIDING_WINDOW,
     LLM_KV_ATTENTION_SCALE,
+    LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
 
     LLM_KV_ROPE_DIMENSION_COUNT,
     LLM_KV_ROPE_DIMENSION_SECTIONS,
97
@@ -311,6 +313,7 @@ enum llm_tensor {
98
99
100
101
102
103
104
105
     LLM_TENSOR_ENC_OUTPUT_NORM,
     LLM_TENSOR_CLS,
     LLM_TENSOR_CLS_OUT,
+    LLM_TENSOR_BSKCN_TV,
     LLM_TENSOR_CONV1D,
     LLM_TENSOR_CONVNEXT_DW,
     LLM_TENSOR_CONVNEXT_NORM,
diff --git a/src/llama-hparams.cpp b/src/llama-hparams.cpp
106
index ea87b295..f3955de9 100644
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
--- a/src/llama-hparams.cpp
+++ b/src/llama-hparams.cpp
@@ -69,3 +69,11 @@ uint32_t llama_hparams::n_embd_v_s() const {
     // corresponds to Mamba's ssm_states size
     return ssm_d_state * ssm_d_inner;
 }
+
+bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
+    if (il < n_layer) {
+        return n_bskcn_arr[n][il] > 0;
+    }
+
+    GGML_ABORT("fatal error");
+}
\ No newline at end of file
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
123
index 1fe45410..1bdcdfd5 100644
124
125
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
126
@@ -50,6 +50,8 @@ struct llama_hparams {
127
128
129
     std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
     std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
 
130
+    std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
131
132
+
     uint32_t n_layer_dense_lead = 0;
133
134
     uint32_t n_lora_q           = 0;
     uint32_t n_lora_kv          = 0;
135
@@ -133,6 +135,9 @@ struct llama_hparams {
136
 
137
138
     // dimension of the recurrent state embeddings
     uint32_t n_embd_v_s() const;
139
+
140
141
+    // Block skip connection
+    bool n_bskcn(uint32_t n, uint32_t il) const;
142
143
144
 };
 
 static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
145
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
146
index 05d58ad9..1252aca1 100644
147
148
--- a/src/llama-model-loader.cpp
+++ b/src/llama-model-loader.cpp
149
@@ -439,6 +439,7 @@ namespace GGUFMeta {
150
151
152
153
     // TODO: this is not very clever - figure out something better
     template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
     template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
+    template bool llama_model_loader::get_key_or_arr<uint32_t>(const std::string & key, std::array<uint32_t, 512> & result, uint32_t n, bool required);
154
 
155
156
 llama_model_loader::llama_model_loader(
         const std::string & fname,
157
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
158
index 36a0a009..ad1315c6 100644
159
160
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
161
162
@@ -1238,6 +1238,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
163
                }
164
165
166
167
             } break;
+        case LLM_ARCH_SOLAR:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
168
169
+                for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
+                    auto & bskcn = hparams.n_bskcn_arr[i];
170
+                    bskcn.fill(0);
171
+                    auto kv = LLM_KV(arch);
172
+                    ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
173
174
175
+                }
+
+                switch (hparams.n_layer) {
176
177
+                    case 64: type = LLM_TYPE_22B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
178
+                }
179
180
181
182
+            } break;
         case LLM_ARCH_WAVTOKENIZER_DEC:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS,    hparams.f_norm_eps);
183
@@ -3316,6 +3331,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
184
 
185
                         layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
186
 
187
188
189
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
190
191
+                    }
+                } break;
192
193
+            case LLM_ARCH_SOLAR:
+                {
194
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
195
196
197
+
+                    // output
+                    {
198
199
+                        output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                        output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
200
201
202
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
203
+                        auto & layer = layers[i];
204
+
205
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
206
+
207
208
209
210
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
211
+
212
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
213
+
214
215
216
217
+                        layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                         layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
                         layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
@@ -3900,6 +3943,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
         case LLM_ARCH_GRANITE:
         case LLM_ARCH_GRANITE_MOE:
         case LLM_ARCH_CHAMELEON:
+        case LLM_ARCH_SOLAR:
             return LLAMA_ROPE_TYPE_NORM;
 
         // the pairs of head values are offset by n_rot/2
diff --git a/src/llama-model.h b/src/llama-model.h
index a7c30444..1afb0024 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -55,6 +55,7 @@ enum llm_type {
     LLM_TYPE_15B,
     LLM_TYPE_16B,
     LLM_TYPE_20B,
+    LLM_TYPE_22B,
     LLM_TYPE_30B,
     LLM_TYPE_32B,
     LLM_TYPE_34B,
@@ -281,6 +282,8 @@ struct llama_layer {
     struct ggml_tensor * ffn_up_scale   = nullptr;
     struct ggml_tensor * ffn_down_scale = nullptr;
241
 
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
+    struct ggml_tensor * bskcn_tv = nullptr;
+
     struct llama_layer_posnet posnet;
 
     struct llama_layer_convnext convnext;
diff --git a/src/llama.cpp b/src/llama.cpp
index ac85bfed..6d320ea4 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -7953,9 +7953,155 @@ struct llm_build_context {
         cb(img_logits, "img_logits", -1);
         cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
         cb(cur, "result_output", -1);
-
         ggml_build_forward_expand(gf, cur);
+        return gf;
+   }
+
+   ggml_cgraph * build_solar() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
262
263
264
265
266
267
268
269
270
271
272
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
273
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        struct ggml_tensor * bskcn_1;
+        struct ggml_tensor * bskcn_2;
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            if (hparams.n_bskcn(0, il)) {
+                bskcn_1 = inpSA;
+            }
+
+            if (hparams.n_bskcn(1, il)) {
+                bskcn_2 = inpSA;
+            }
+
+            if (hparams.n_bskcn(2, il)) {
+                inpSA = ggml_add(
+                   ctx0,
+                   ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+                   ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+            }
+
+            if (hparams.n_bskcn(3, il)) {
+                inpSA = ggml_add(
+                   ctx0,
+                   ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+                   ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+            }
308
 
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // rope freq factors for llama3; may return nullptr for llama2 and other models
+                struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+        ggml_build_forward_expand(gf, cur);
405
406
         return gf;
     }
407
 
408
@@ -8398,6 +8544,10 @@ static struct ggml_cgraph * llama_build_graph(
409
             {
410
                 result = llm.build_chameleon();
411
412
413
414
415
             } break;
+        case LLM_ARCH_SOLAR:
+            {
+                result = llm.build_solar();
+            } break;
416
417
418
         case LLM_ARCH_WAVTOKENIZER_DEC:
             {
                 result = llm.build_wavtokenizer_dec();