convert_mixtral.go 2.16 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package convert

import (
	"fmt"
	"io"
	"slices"
	"strings"

	"github.com/ollama/ollama/llm"
)

type mixtral struct {
	llama
	NumLocalExperts    uint32 `json:"num_local_experts"`
	NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}

func (p *mixtral) KV(t *Tokenizer) llm.KV {
	kv := p.llama.KV(t)

	if p.NumLocalExperts > 0 {
		kv["llama.expert_count"] = p.NumLocalExperts
	}

	if p.NumExpertsPerToken > 0 {
		kv["llama.expert_used_count"] = p.NumExpertsPerToken
	}

	return kv
}

Michael Yang's avatar
Michael Yang committed
32
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
Michael Yang's avatar
Michael Yang committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
	oldnew := []string{
		"model.layers", "blk",
		"w1", "ffn_gate_exps",
		"w2", "ffn_down_exps",
		"w3", "ffn_up_exps",
	}

	for i := range p.NumLocalExperts {
		oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
	}

	// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
	namer := strings.NewReplacer(oldnew...)
	experts := make(map[string]experts)

	// merge experts into a single tensor while removing them from ts
	ts = slices.DeleteFunc(ts, func(t Tensor) bool {
		if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
			return false
		}

		name := namer.Replace(t.Name())
		experts[name] = append(experts[name], t)
		return true
	})

Michael Yang's avatar
Michael Yang committed
59
	var out []llm.Tensor
Michael Yang's avatar
Michael Yang committed
60
61
	for n, e := range experts {
		// TODO(mxyng): sanity check experts
Michael Yang's avatar
Michael Yang committed
62
		out = append(out, llm.Tensor{
Michael Yang's avatar
Michael Yang committed
63
64
65
66
67
68
69
70
71
72
			Name:     n,
			Kind:     e[0].Kind(),
			Shape:    append([]uint64{uint64(len(e))}, e[0].Shape()...),
			WriterTo: e,
		})
	}

	return append(out, p.llama.Tensors(ts)...)
}

Michael Yang's avatar
Michael Yang committed
73
74
75
76
77
78
79
func (p *mixtral) Replacements() []string {
	return append(
		p.llama.Replacements(),
		"block_sparse_moe.gate", "ffn_gate_inp",
	)
}

Michael Yang's avatar
Michael Yang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
type experts []Tensor

func (e experts) WriteTo(w io.Writer) (int64, error) {
	// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
	for _, t := range e {
		// the canonical merged experts tensor stacks all experts along a new, 0 axis,
		// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
		// this accomplishes the same thing by writing each expert tensor in sequence
		if _, err := t.WriteTo(w); err != nil {
			return 0, err
		}
	}

	return 0, nil
}