memory.go 4.98 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
package llm

import (
	"fmt"
	"log/slog"
	"strings"

	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/format"
	"github.com/ollama/ollama/gpu"
)

// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
	var estimatedVRAM uint64
	if opts.NumCtx > int(ggml.KV().ContextLength()) {
		slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
		opts.NumCtx = int(ggml.KV().ContextLength())
	}

	if opts.NumCtx < 4 {
		opts.NumCtx = 4
	}

	// Split up the GPUs by type and try them
	for _, gpus := range allGpus.ByLibrary() {
		var layerCount int
		layerCount, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts)
		if opts.NumGPU < 0 {
			if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
				return true, estimatedVRAM
			}
		} else {
			if layerCount > 0 && layerCount >= opts.NumGPU {
				return true, estimatedVRAM
			}
		}
	}
	return false, estimatedVRAM
}

// Given a model and one or more GPU targets, predict how many layers and bytes we can load
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64) {
	if gpus[0].Library == "cpu" {
		return 0, 0
	}
	var memoryAvailable uint64
	for _, info := range gpus {
		memoryAvailable += info.FreeMemory
	}
	slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))

	// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
	memoryMinimum := gpus[0].MinimumMemory

	for _, projector := range projectors {
		memoryMinimum += projectorMemoryRequirements(projector)

		// multimodal models require at least 2048 context
		opts.NumCtx = max(opts.NumCtx, 2048)
	}

	// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
	var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()

	graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
	if graphPartialOffload == 0 {
		graphPartialOffload = ggml.KV().GQA() * kv / 6
	}

	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
	}

	graphFullOffload *= uint64(len(gpus))
	graphPartialOffload *= uint64(len(gpus))

	// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
	memoryRequiredTotal := memoryMinimum + graphFullOffload

	// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
	memoryRequiredPartial := memoryMinimum + graphPartialOffload

	if memoryRequiredPartial > memoryAvailable {
		slog.Debug("insufficient VRAM to load any model layers")
		return 0, 0
	}

	var layerCount int
	layers := ggml.Tensors().Layers()
	for i := 0; i < int(ggml.KV().BlockCount()); i++ {
		memoryLayer := layers[fmt.Sprintf("blk.%d", i)].size()

		// KV is proportional to the number of layers
		memoryLayer += kv / ggml.KV().BlockCount()

		memoryRequiredTotal += memoryLayer
		if memoryAvailable > memoryRequiredPartial+memoryLayer {
			memoryRequiredPartial += memoryLayer
			layerCount++
		}
	}

	var memoryLayerOutput uint64
	for k, v := range layers {
		if !strings.HasPrefix(k, "blk.") {
			memoryLayerOutput += v.size()
		}
	}

	memoryRequiredTotal += memoryLayerOutput

	if memoryAvailable > memoryRequiredTotal {
		layerCount = int(ggml.KV().BlockCount()) + 1
		memoryRequiredPartial = memoryRequiredTotal
	}

	memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv

	slog.Info(
		"offload to gpu",
		slog.Group(
			"layers",
			// actual number of layers offloaded
			"real", opts.NumGPU,
			// estimated number of layers that can be offloaded
			"estimate", layerCount,
		),
		slog.Group(
			"memory",
			// memory available for offloading
			"available", format.HumanBytes2(memoryAvailable),
			slog.Group(
				"required",
				// memory required for full offloading
				"full", format.HumanBytes2(memoryRequiredTotal),
				// memory required to offload layers.estimate layers
				"partial", format.HumanBytes2(memoryRequiredPartial),
				// memory of KV cache
				"kv", format.HumanBytes2(kv),
			),
			slog.Group(
				"weights",
				// memory of the weights
				"total", format.HumanBytes2(memoryWeights),
				// memory of repeating layers
				"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
				// memory of non-repeating layers
				"nonrepeating", format.HumanBytes2(memoryLayerOutput),
			),
			slog.Group(
				"graph",
				// memory of graph when fully offloaded
				"full", format.HumanBytes2(graphFullOffload),
				// memory of graph when not fully offloaded
				"partial", format.HumanBytes2(graphPartialOffload),
			),
		),
	)
	return layerCount, uint64(memoryRequiredPartial)
}