model.go 4.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//go:build mlx

package gemma3

import (
	"bytes"
	"image"
	"math"
	"slices"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/x/kvcache"
	"github.com/ollama/ollama/x/ml"
	"github.com/ollama/ollama/x/ml/nn"
	"github.com/ollama/ollama/x/model"
	"github.com/ollama/ollama/x/model/input"
)

type Model struct {
	model.Base
	model.SentencePiece

	*VisionModel `gguf:"vision_tower.vision_model"`
	*TextModel   `gguf:"language_model.model"`

	*MultiModalProjector `gguf:"multi_modal_projector"`

	ImageProcessor
}

var _ model.MultimodalProcessor = (*Model)(nil)

type MultiModalProjector struct {
	SoftEmbNorm     *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
	InputProjection *nn.Linear  `gguf:"mm_input_projection_weight"` // TODO .weight vs _weight

	tokensPerImage int
}

func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, imageSize, patchSize int, eps float32) ml.Tensor {
	l := visionOutputs.Dim(0)

	visionOutputs = visionOutputs.Transpose(ctx, 1, 0, 2, 3).Contiguous(ctx, false)
	patchesPerImage := imageSize / patchSize
	visionOutputs = visionOutputs.Reshape(ctx, patchesPerImage, patchesPerImage, l)

	kernelSize := patchesPerImage / int(math.Sqrt(float64(p.tokensPerImage)))
	visionOutputs = visionOutputs.AvgPool2D(ctx, kernelSize, kernelSize, 0)
	visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0)*visionOutputs.Dim(1), l)
	visionOutputs = visionOutputs.Transpose(ctx, 1, 0, 2, 3).Contiguous(ctx, false)
	visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)

	// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
	visionOutputs = visionOutputs.Matmul(ctx, p.InputProjection.Weight.Transpose(ctx, 1, 0, 2, 3).Contiguous(ctx, false))
	return visionOutputs
}

func New(c fs.Config) (model.Model, error) {
	// slog.Info("XXX Config", "c", c)
	m := Model{
		SentencePiece: model.NewSentencePiece(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{
						int32(c.Uint("tokenizer.ggml.eos_token_id")),
						int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
					},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
		),
		ImageProcessor: newImageProcessor(c),
		VisionModel:    newVisionModel(c),
		TextModel:      newTextModel(c),
		MultiModalProjector: &MultiModalProjector{
			tokensPerImage: int(c.Uint("mm_tokens_per_image", 256)),
		},
	}

	// slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	// m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))

	// TODO need to implement sliding window...
	m.Cache = kvcache.NewMLXCausalCache()

	return &m, nil
}

func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
	if len(m.VisionModel.Layers) == 0 {
		return nil, model.ErrNoVisionModel
	}

	image, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

	f32s, err := m.ImageProcessor.ProcessImage(image)
	if err != nil {
		return nil, err
	}

	pixelValues := ctx.Input().FromFloats(f32s,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.imageSize,
		m.ImageProcessor.numChannels,
	)

	visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
	visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
	return []input.Multimodal{{Tensor: visionOutputs}}, nil
}

func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
	var result []*input.Input

	for _, inp := range inputs {
		if len(inp.Multimodal) == 0 {
			result = append(result, inp)
		} else {
			inputMultimodal := inp.Multimodal[0].Tensor

			result = append(result,
				&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
				&input.Input{Token: 255999},                                     // "<start_of_image>""
				&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
			)

			// add image token placeholders
			result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)

			result = append(result,
				&input.Input{Token: 256000}, // <end_of_image>
				&input.Input{Token: 108},    // "\n\n"
			)
		}
	}

	return result, nil
}

func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func init() {
	model.Register("gemma3", New)
	model.Register("gemma3_embed", newEmbedModel)
}