quant.go 9.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
//go:build mlx

package mlx

/*
#include <stdio.h>
#include <string.h>

#include "mlx/c/array.h"
#include "mlx/c/ops.h"

// Derived from https://github.com/ml-explore/mlx/blob/main/mlx/io/gguf_quants.cpp

void unpack_32_4(uint8_t* data, int8_t* dst) {
	memset(dst, 0, 16);
	for (int j = 0; j < 16; ++j) {
		uint8_t x = (data[j + 2] & 0x0F); // j+2 to skip scale bytes.
		if (j % 2 != 0) {
		x <<= 4;
		}
		dst[j / 2] += x;
	}
	// Last 16 weights are in the higher bits
	for (int j = 0; j < 16; ++j) {
		uint8_t x = (data[j + 2] >> 4);
		if (j % 2 != 0) {
		x <<= 4;
		}
		dst[8 + j / 2] += x;
	}
}

// Extracts (weight, scales, biases) from Q4_0 tensors.
// Data layout is: |16 bit scale|32 x 4bit weights|.
void extract_q4_0_data(
		uint8_t* data,
		mlx_array* weights_arr,
		mlx_array* scales_arr,
		mlx_array* biases_arr) {
	const uint64_t bytes_per_block = 18; // 2 bytes scale, 32x0.5 byte weights
	uint8_t* weights = mlx_array_data_uint8(*weights_arr);
	float16_t* scales = mlx_array_data_float16(*scales_arr);
	float16_t* biases = mlx_array_data_float16(*biases_arr);
	for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
		scales[i] = *((float16_t*)data);
		biases[i] = -8 * scales[i];
		unpack_32_4(data, weights);
		weights += 16;
		data += bytes_per_block;
	}
}

// Extracts (weight, scales, biases) from Q4_1 tensors.
// Data layout is: |16 bit scale|16 bit bias|32 x 4bit weights|.
void extract_q4_1_data(
		uint8_t* data,
		mlx_array* weights_arr,
		mlx_array* scales_arr,
		mlx_array* biases_arr) {
	const uint64_t bytes_per_block = 20; // 2 bytes scale, 2 bytes bias, 32x0.5 byte weights
	uint8_t* weights = mlx_array_data_uint8(*weights_arr);
	float16_t* scales = mlx_array_data_float16(*scales_arr);
	float16_t* biases = mlx_array_data_float16(*biases_arr);
	for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
		scales[i] = *((float16_t*)data);
		biases[i] = *((float16_t*)(data) + 1);
		unpack_32_4(data, weights);
		weights += 16;
		data += bytes_per_block;
	}
}

// Extracts (weight, scales, biases) from Q8_0 tensors.
// Data layout is: |16 bit scale|32 x 8bit weights|.
void extract_q8_0_data(
		uint8_t* data,
		mlx_array* weights_arr,
		mlx_array* scales_arr,
		mlx_array* biases_arr) {
	const uint64_t weights_per_block = 32;
	const uint64_t bytes_per_block = 34; // 2 bytes scale, 32x1 byte weights
	uint8_t* weights = mlx_array_data_uint8(*weights_arr);
	float16_t* scales = mlx_array_data_float16(*scales_arr);
	float16_t* biases = mlx_array_data_float16(*biases_arr);
	for (int64_t i = 0; i < mlx_array_size(*scales_arr); i++) {
		uint8_t* block_data = data + i * bytes_per_block;
		scales[i] = *((float16_t*)block_data);
		biases[i] = -128 * scales[i];
		for (int64_t j = 0; j < weights_per_block; ++j) {
			uint8_t x = block_data[j + 2]; // j+2 to skip the scale bytes.
			// Original data is in int8_t, so we add a bias of -128 and invert the
			// first bit.
			x ^= 1 << 7;
			weights[i * weights_per_block + j] = x;
		}
	}
}

// Drived from ggml-quants.c

#define QK_K 256

// 6-bit quantization
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 6.5625 bits per weight
typedef struct {
    uint8_t ql[QK_K/2];      // quants, lower 4 bits
    uint8_t qh[QK_K/4];      // quants, upper 2 bits
    int8_t  scales[QK_K/16]; // scales, quantized with 8 bits
    uint16_t d;             // super-block scale
} block_q6_K;

void dequant_row_q6_K(const void * restrict vx, void * restrict vy, int k) {
    const int64_t nb = k / QK_K;
	block_q6_K *x = (block_q6_K *)vx;
	float16_t* y = (float16_t *)vy;

    for (int i = 0; i < nb; i++) {
		float16_t d = 0.0;
		memcpy(&d, &x[i].d, sizeof(d));

        const uint8_t * restrict ql = x[i].ql;
        const uint8_t * restrict qh = x[i].qh;
        const int8_t  * restrict sc = x[i].scales;

        for (int n = 0; n < QK_K; n += 128) {
            for (int l = 0; l < 32; ++l) {
                int is = l/16;
                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
                y[l +  0] = d * sc[is + 0] * q1;
                y[l + 32] = d * sc[is + 2] * q2;
                y[l + 64] = d * sc[is + 4] * q3;
                y[l + 96] = d * sc[is + 6] * q4;
            }
            y  += 128;
            ql += 64;
            qh += 32;
            sc += 8;
        }
    }
}

#define K_SCALE_SIZE 12
#define GGML_COMMON_AGGR_U
#define GGML_COMMON_AGGR_S

// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
typedef struct {
    union {
        struct {
            uint16_t d;    // super-block scale for quantized scales
            uint16_t dmin; // super-block scale for quantized mins
        } GGML_COMMON_AGGR_S;
        uint16_t dm;
    } GGML_COMMON_AGGR_U;
    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
    uint8_t qs[QK_K/2];           // 4--bit quants
} block_q4_K;

static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
    if (j < 4) {
        *d = q[j] & 63; *m = q[j + 4] & 63;
    } else {
        *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        *m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
    }
}

void dequant_row_q4_K(const void * restrict vx, void * restrict vy, int k) {
	block_q4_K *x = (block_q4_K *)vx;
	float16_t* y = (float16_t *)vy;
    const int nb = k / QK_K;

    for (int i = 0; i < nb; i++) {
        const uint8_t * q = x[i].qs;
		float16_t d = 0.0;
		memcpy(&d, &x[i].d, sizeof(d));
		float16_t min = 0.0;
		memcpy(&min, &x[i].dmin, sizeof(d));

        int is = 0;
        uint8_t sc, m;
        for (int j = 0; j < QK_K; j += 64) {
            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
            const float16_t d1 = d * sc; const float16_t m1 = min * m;
            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
            const float16_t d2 = d * sc; const float16_t m2 = min * m;
            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
            q += 32; is += 2;
        }
    }
}



*/
import "C"

import (
	"fmt"
	"unsafe"

	"github.com/x448/float16"
)

func gguf_load_quantized(data unsafe.Pointer, name string, final_shape []C.int, dtype uint32, stream C.mlx_stream) (r C.mlx_array, err error) {
	shape := append([]C.int{}, final_shape...)
	var weights_per_byte C.int
	if dtype == 2 || dtype == 3 {
		weights_per_byte = 2
	} else if dtype == 8 {
		weights_per_byte = 1
	} else {
		return r, fmt.Errorf("unsupported tensor type %d", dtype)
	}

	weights_per_block := C.int(32)
	if shape[len(shape)-1]%weights_per_block != 0 {
		return r, fmt.Errorf("[load_gguf] tensor has incompatible last dim shape: %d", shape[len(shape)-1])
	}

	weights_shape := append([]C.int{}, shape...)
	weights_shape[len(weights_shape)-1] /= (weights_per_byte * 4)
	w_nbytes := C.int(unsafe.Sizeof(uint32(0)))
	for i := range weights_shape {
		w_nbytes *= weights_shape[i]
	}
	w_data := make([]byte, w_nbytes)
	cbytes := C.CBytes(w_data)
	defer C.free(cbytes)
	weights := C.mlx_array_new_data(
		cbytes,
		&weights_shape[0],
		C.int(len(weights_shape)),
		C.MLX_UINT32,
	)

	// For scales and bias
	shape[len(shape)-1] = shape[len(shape)-1] / weights_per_block
	sb_nbytes := C.int(unsafe.Sizeof(float16.Float16(0)))
	for i := range shape {
		sb_nbytes *= shape[i]
	}

	s_data := make([]byte, sb_nbytes)
	cbytes = C.CBytes(s_data)
	defer C.free(cbytes)
	scales := C.mlx_array_new_data(
		cbytes,
		&shape[0],
		C.int(len(shape)),
		C.MLX_FLOAT16,
	)
	b_data := make([]byte, sb_nbytes)
	cbytes = C.CBytes(b_data)
	defer C.free(cbytes)
	biases := C.mlx_array_new_data(
		cbytes,
		&shape[0],
		C.int(len(shape)),
		C.MLX_FLOAT16,
	)
	var bits C.int
	switch dtype {
	case 2:
		C.extract_q4_0_data((*C.uint8_t)(data), &weights, &scales, &biases)
		bits = 4
	case 3:
		C.extract_q4_1_data((*C.uint8_t)(data), &weights, &scales, &biases)
		bits = 4
	case 8:
		C.extract_q8_0_data((*C.uint8_t)(data), &weights, &scales, &biases)
		bits = 8
	}
	groupSize := C.mlx_optional_int{value: 32, has_value: true}
	bitsOpt := C.mlx_optional_int{value: bits, has_value: true}
	var dtypeOpt C.mlx_optional_dtype // has_value defaults to false
	C.mlx_dequantize(
		&r,
		weights,
		scales,
		biases,
		groupSize,
		bitsOpt,
		nil, // TODO mode
		dtypeOpt,
		stream,
	)
	C.mlx_array_free(weights)
	C.mlx_array_free(scales)
	C.mlx_array_free(biases)

	return r, nil
}

func load_k_quantized(data unsafe.Pointer, name string, shape []C.int, dtype uint32, stream C.mlx_stream) (r C.mlx_array, err error) {
	size := 1
	for _, d := range shape {
		size *= int(d)
	}
	fdata := make([]float16.Float16, size)
	switch dtype {
	case 14:
		C.dequant_row_q6_K(
			data,
			unsafe.Pointer(&fdata[0]),
			C.int(size),
		)

	case 12:
		C.dequant_row_q4_K(
			data,
			unsafe.Pointer(&fdata[0]),
			C.int(size),
		)
	default:
		return r, fmt.Errorf("unsupported K quant")
	}

	r = C.mlx_array_new_data(
		unsafe.Pointer(&fdata[0]),
		&shape[0],
		C.int(len(shape)),
		C.MLX_FLOAT16,
	)
	return r, nil
}