causal.go 25.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
package kvcache

// import (
// 	"errors"
// 	"fmt"
// 	"log/slog"
// 	"math"
// 	"slices"

// 	"github.com/ollama/ollama/ml"
// 	"github.com/ollama/ollama/model/input"
// )

// type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)

// // Causal cache stores K and V tensors according to their position in the
// // sequence. Returns the history and a mask for attending to past tokens
// //
// // The tensors are of shape embed dim, kv heads, batch size
// // The mask is of shape history size, batch size
// type Causal struct {
// 	DType ml.DType

// 	// swaWindowSize is the number of tokens that will be included in the mask
// 	// during attention operations. swaMemorySize is the number of tokens that
// 	// will be retained in memory for partial prefix caching. Set to math.MaxInt32
// 	// for unlimited or if sliding window attention is not being used.
// 	swaWindowSize int32
// 	swaMemorySize int32

// 	chunkSize int32

// 	opts CausalOptions

// 	// maxBatch is the largest batch that we might receive
// 	maxBatch int

// 	// config controls mostly backend-specific optimizations
// 	config *ml.CacheConfig

// 	// ** current forward pass **

// 	// size of the current batch
// 	curBatchSize int

// 	// locations for data storage for this batch
// 	curLoc ml.Tensor

// 	// mask of the cache as used by this batch
// 	curMask ml.Tensor

// 	// the active layer for Get and Put
// 	curLayer int

// 	// locations in the cache that are needed for this batch
// 	curCellRange cellRange

// 	// curSequences is the sequences corresponding to this pass's entries in the cache
// 	curSequences []int

// 	// curPositions is the positions corresponding to this pass's entries in the cache
// 	curPositions []int32

// 	// ** cache metadata **

// 	// for each possible location in the cache, stores the position and set of sequences
// 	// that reference the data there
// 	cells []cacheCell

// 	// maps from sequence to the range of locations where it is stored in the cache
// 	cellRanges map[int]cellRange

// 	// ** cache data storage **

// 	shiftFn      shiftFn
// 	backend      ml.Backend
// 	ctxs         map[int]ml.Context
// 	keys, values map[int]ml.Tensor

// 	kHeadDims, vHeadDims, numKVHeads map[int]int
// }

// type cacheCell struct {
// 	pos       int32
// 	sequences []int
// }

// type cellRange struct {
// 	min int
// 	max int
// }

// func NewCausalCache(shift shiftFn) *Causal {
// 	return &Causal{
// 		shiftFn:    shift,
// 		ctxs:       make(map[int]ml.Context),
// 		keys:       make(map[int]ml.Tensor),
// 		values:     make(map[int]ml.Tensor),
// 		kHeadDims:  make(map[int]int),
// 		vHeadDims:  make(map[int]int),
// 		numKVHeads: make(map[int]int),
// 	}
// }

// func NewSWACache(windowSize int32, shift shiftFn) *Causal {
// 	return &Causal{
// 		swaWindowSize: windowSize,
// 		shiftFn:       shift,
// 		ctxs:          make(map[int]ml.Context),
// 		keys:          make(map[int]ml.Tensor),
// 		values:        make(map[int]ml.Tensor),
// 		kHeadDims:     make(map[int]int),
// 		vHeadDims:     make(map[int]int),
// 		numKVHeads:    make(map[int]int),
// 	}
// }

// func NewSWAMemCache(windowSize int32, memorySize int32, shift shiftFn) *Causal {
// 	return &Causal{
// 		swaWindowSize: windowSize,
// 		swaMemorySize: memorySize,
// 		shiftFn:       shift,
// 		ctxs:          make(map[int]ml.Context),
// 		keys:          make(map[int]ml.Tensor),
// 		values:        make(map[int]ml.Tensor),
// 		kHeadDims:     make(map[int]int),
// 		vHeadDims:     make(map[int]int),
// 		numKVHeads:    make(map[int]int),
// 	}
// }

// func NewChunkedAttentionCache(chunkSize int32, shift shiftFn) *Causal {
// 	return &Causal{
// 		chunkSize:  chunkSize,
// 		shiftFn:    shift,
// 		ctxs:       make(map[int]ml.Context),
// 		keys:       make(map[int]ml.Tensor),
// 		values:     make(map[int]ml.Tensor),
// 		kHeadDims:  make(map[int]int),
// 		vHeadDims:  make(map[int]int),
// 		numKVHeads: make(map[int]int),
// 	}
// }

// func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
// 	if c.config == nil {
// 		var config ml.CacheConfig
// 		if cc, ok := backend.(ml.BackendCacheConfig); ok {
// 			config = cc.CacheConfig()
// 		}
// 		c.config = &config
// 	}

// 	if c.config.CachePadding == 0 {
// 		c.config.CachePadding = 1
// 	}

// 	if c.config.MaskBatchPadding == 0 {
// 		c.config.MaskBatchPadding = 1
// 	}

// 	// TODO what types do we handle here?
// 	// if c.config.MaskDType == ml.DTypeOther {
// 	// 	c.config.MaskDType = ml.DTypeFloat32
// 	// }

// 	if c.swaWindowSize == 0 {
// 		c.swaWindowSize = math.MaxInt32
// 	}
// 	if c.swaMemorySize == 0 {
// 		c.swaMemorySize = c.swaWindowSize
// 	}
// 	// We will allocate space in the cache for the stop token, which won't be part of a follow on
// 	// sequence, so allocate an extra token of storage to ensure that we can jump back without
// 	// causing a cache break. As an optimization, only do this when we have parallel sequences
// 	// because the extra token will live in the batch buffer and won't get overwritten if we
// 	// only have a single sequence.
// 	if c.swaMemorySize != math.MaxInt32 && maxSequences > 1 {
// 		c.swaMemorySize = max(c.swaMemorySize, c.swaWindowSize+1)
// 	}
// 	if int(c.swaMemorySize) >= capacity {
// 		c.swaMemorySize = math.MaxInt32
// 	}

// 	if c.swaMemorySize < c.swaWindowSize {
// 		panic(fmt.Errorf("sliding window memory (%v) must be at least as large as the window (%v)", c.swaMemorySize, c.swaWindowSize))
// 	}

// 	var cacheSize int
// 	if c.swaMemorySize == math.MaxInt32 {
// 		cacheSize = maxSequences * capacity
// 	} else {
// 		cacheSize = (maxSequences * int(c.swaMemorySize)) + maxBatch
// 	}
// 	cacheSize = roundUp(cacheSize, c.config.CachePadding)
// 	c.cells = make([]cacheCell, cacheSize)

// 	c.DType = dtype
// 	c.cellRanges = make(map[int]cellRange)
// 	c.backend = backend
// 	c.maxBatch = maxBatch
// }

// func (c *Causal) SetConfig(config ml.CacheConfig) {
// 	if c.config != nil {
// 		panic("config cannot be changed after being previously set, either by the model or backend")
// 	}

// 	c.config = &config
// }

// func (c *Causal) Close() {
// 	slog.Info("XXX Causal.Close called", "number of contexts", len(c.ctxs))
// 	for _, ctx := range c.ctxs {
// 		ctx.Close()
// 	}
// }

// func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
// 	slog.Info("XXX Causal.StartForward", "cell count", len(c.cells), "prior batch size", c.curBatchSize, "positions", len(batch.Positions), "reserve", reserve, "batch", batch)
// 	// panic("XXX Causal.StartForward")
// 	c.curBatchSize = len(batch.Positions)
// 	c.curSequences = batch.Sequences
// 	c.curPositions = batch.Positions
// 	c.opts.Except = nil

// 	var locs []int32
// 	if !reserve {
// 		c.updateSlidingWindow()

// 		var err error
// 		locs, err = c.findLocs()
// 		if err != nil {
// 			return err
// 		}
// 		slog.Info("XXX Causal.StartForward", "findLocs len", len(locs))

// 		for i, pos := range batch.Positions {
// 			seq := batch.Sequences[i]
// 			loc := int(locs[i])

// 			c.cells[loc] = cacheCell{pos: pos, sequences: []int{seq}}

// 			seqRange, ok := c.cellRanges[seq]
// 			if !ok {
// 				seqRange = newRange()
// 			}

// 			seqRange.min = min(seqRange.min, loc)
// 			c.curCellRange.min = min(c.curCellRange.min, loc)

// 			seqRange.max = max(seqRange.max, loc)
// 			c.curCellRange.max = max(c.curCellRange.max, loc)

// 			c.cellRanges[seq] = seqRange
// 		}
// 	} else {
// 		// If we are reserving memory, don't update any of the cache metadata but set the size
// 		// to the worst case.
// 		locs = make([]int32, c.curBatchSize)
// 		for i := range locs {
// 			locs[i] = int32(i)
// 		}
// 		c.curCellRange.min = 0
// 		c.curCellRange.max = len(c.cells) - 1
// 	}

// 	// XXX Building up the locs for what's already processed (if any)
// 	dummyLocs := []int{}
// 	c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
// 	c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1

// 	for i := range c.curBatchSize {
// 		enabled := !slices.Contains(c.opts.Except, i)
// 		for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
// 			if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
// 				(enabled && c.cells[j].pos > c.curPositions[i]) ||
// 				c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
// 				c.cells[j].pos < c.curPositions[i]-c.swaWindowSize {
// 				// mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
// 			} else {
// 				if len(dummyLocs) == 0 || dummyLocs[len(dummyLocs)-1] != i {
// 					dummyLocs = append(dummyLocs, i)
// 				}
// 			}
// 		}
// 	}
// 	slog.Info("XXX Causa.StartForward calculated locations", "locs", dummyLocs)

// 	slog.Info("XXX Causal.StartForward", "locs", locs)
// 	c.curLoc = ctx.Input().FromInts(locs, len(locs))
// 	c.curMask = c.buildMask(ctx)

// 	return nil
// }

// func newRange() cellRange {
// 	return cellRange{
// 		min: math.MaxInt,
// 		max: 0,
// 	}
// }

// // Returns a slice of locations where each token in the batch should be stored
// func (c *Causal) findLocs() ([]int32, error) {
// 	loc := make([]int32, 0, c.curBatchSize)

// 	for i := range c.cells {
// 		if len(c.cells[i].sequences) == 0 {
// 			loc = append(loc, int32(i))
// 			if len(loc) >= c.curBatchSize {
// 				return loc, nil
// 			}
// 		}
// 	}

// 	return nil, fmt.Errorf("%w (cache: %v batch: %v)", ErrKvCacheFull, len(c.cells), c.curBatchSize)
// }

// func (c *Causal) updateSlidingWindow() {
// 	c.curCellRange = newRange()

// 	if c.swaMemorySize == math.MaxInt32 {
// 		for _, seq := range c.curSequences {
// 			if seqRange, ok := c.cellRanges[seq]; ok {
// 				c.curCellRange.min = min(c.curCellRange.min, seqRange.min)
// 				c.curCellRange.max = max(c.curCellRange.max, seqRange.max)
// 			}
// 		}

// 		return
// 	}

// 	type lowestPosition struct {
// 		pos      int32
// 		curBatch bool
// 	}

// 	// create a map of unique sequences to the lowest position in that sequence
// 	lowestPos := make(map[int]lowestPosition)
// 	for i := range c.curPositions {
// 		seq := c.curSequences[i]

// 		lowest, ok := lowestPos[seq]
// 		if !ok {
// 			lowest = lowestPosition{pos: c.curPositions[i], curBatch: true}
// 		} else if c.curPositions[i] < lowest.pos {
// 			lowest.pos = c.curPositions[i]
// 		}

// 		lowestPos[seq] = lowest
// 	}

// 	// for any sequences are not part of this batch, clean up any tokens
// 	// that are no longer needed after the processing of the previous
// 	// batch
// 	for seq, seqRange := range c.cellRanges {
// 		if _, ok := lowestPos[seq]; !ok {
// 			var last int32
// 			for i := seqRange.min; i <= seqRange.max; i++ {
// 				if slices.Contains(c.cells[i].sequences, seq) {
// 					last = max(last, c.cells[i].pos)
// 				}
// 			}

// 			lowestPos[seq] = lowestPosition{pos: last + 1, curBatch: false}
// 		}
// 	}

// 	// delete any entries that are beyond the window of the oldest position in the sequence
// 	for seq, lowest := range lowestPos {
// 		oldRange, ok := c.cellRanges[seq]
// 		if !ok {
// 			continue
// 		}

// 		newRange := newRange()

// 		for i := oldRange.min; i <= oldRange.max; i++ {
// 			if slices.Contains(c.cells[i].sequences, seq) {
// 				if c.cells[i].pos < lowest.pos-c.swaMemorySize {
// 					c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
// 				} else {
// 					newRange.min = min(newRange.min, i)
// 					newRange.max = max(newRange.max, i)
// 				}
// 				if lowest.curBatch && c.cells[i].pos >= lowest.pos-c.swaWindowSize {
// 					c.curCellRange.min = min(c.curCellRange.min, i)
// 					c.curCellRange.max = max(c.curCellRange.max, i)
// 				}
// 			}
// 		}

// 		c.cellRanges[seq] = newRange
// 	}
// }

// func roundDown(length, pad int) int {
// 	return (length / pad) * pad
// }

// func roundUp(length, pad int) int {
// 	return ((length + pad - 1) / pad) * pad
// }

// // Builds a mask of history x batch indicating whether for each token in the batch the
// // token in the history should apply. This is based on both the sequence and causality (the
// // position of the history is not ahead of the token in the batch).
// func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
// 	// Align and pad the two dimensions as required by the backend
// 	batchSize := roundUp(c.curBatchSize, c.config.MaskBatchPadding)

// 	c.curCellRange.min = roundDown(c.curCellRange.min, c.config.CachePadding)
// 	c.curCellRange.max = roundUp(c.curCellRange.max+1, c.config.CachePadding) - 1

// 	length := c.curCellRange.max - c.curCellRange.min + 1

// 	mask := make([]float32, batchSize*length)

// 	for i := range c.curBatchSize {
// 		enabled := !slices.Contains(c.opts.Except, i)
// 		for j := c.curCellRange.min; j <= c.curCellRange.max; j++ {
// 			if !slices.Contains(c.cells[j].sequences, c.curSequences[i]) ||
// 				(enabled && c.cells[j].pos > c.curPositions[i]) ||
// 				c.chunkSize > 0 && c.cells[j].pos < c.curPositions[i]-c.curPositions[i]%c.chunkSize ||
// 				c.cells[j].pos < c.curPositions[i]-c.swaWindowSize {
// 				mask[i*length+(j-c.curCellRange.min)] = float32(math.Inf(-1))
// 			}
// 		}
// 	}

// 	// Mask out any padding tokens we added. For padding that we added to the cache history, this
// 	// has already been masked out because the sequence doesn't match.
// 	for i := c.curBatchSize * length; i < len(mask); i++ {
// 		mask[i] = float32(math.Inf(-1))
// 	}

// 	maskTensor := ctx.Input().FromFloats(mask, batchSize, length)

// 	// if c.config.MaskDType != ml.DTypeFloat32 {
// 	// 	maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
// 	// }

// 	slog.Info("XXX Causal.buildMask", "c.curBatchSize", c.curBatchSize, "c.config.MaskBatchPadding", c.config.MaskBatchPadding, "c.curCellRange.min", c.curCellRange.min, "c.curCellRange.max", c.curCellRange.max, "size", len(mask), "shape", []int{1, batchSize, length})

// 	return maskTensor
// }

// func (c *Causal) SetLayer(layer int) {
// 	c.curLayer = layer
// }

// type CausalOptions struct {
// 	// Enabled controls whether the causal mask is generated for a particular index in a batch
// 	Except []int
// }

// // SetCausal disables causal mask generation for a particular range of indicies in
// // the current batch for subsequent calls to Get. The state resets for the next forward pass.
// func (c *Causal) SetCausal(ctx ml.Context, opts CausalOptions) {
// 	if !slices.Equal(c.opts.Except, opts.Except) {
// 		c.opts = opts
// 		if ctx != nil {
// 			c.curMask = c.buildMask(ctx)
// 		}
// 	}
// }

// func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) {
// 	key := c.keys[c.curLayer]
// 	value := c.values[c.curLayer]

// 	kHeadDim := c.kHeadDims[c.curLayer]
// 	vHeadDim := c.vHeadDims[c.curLayer]
// 	numKVHeads := c.numKVHeads[c.curLayer]
// 	// rowSize := numKVHeads * c.curBatchSize
// 	// cachedSize := c.curMask.Dim(1)
// 	cachedSize := c.curLoc.Dim(0)
// 	// kCellSize := kHeadDim * numKVHeads
// 	// vCellSize := vHeadDim * numKVHeads

// 	slog.Info("XXX Causal.Get full cache", "key", key)
// 	slog.Info("XXX Causal.Get full cache", "value", value)
// 	slog.Info("XXX Causal.Get full cache", "curloc", c.curLoc)
// 	slog.Info("XXX Causal.Get", "curMask", c.curMask)
// 	slog.Info("XXX Causal.Get", "kHeadDim", kHeadDim, "numKVHeads", numKVHeads, "cachedSize", cachedSize, "kHeadDim", kHeadDim)
// 	// panic("XXX")

// 	// fmt.Fprintln(os.Stderr, key.ToString())
// 	// panic("full cache value")

// 	// TODO we should use TakeAxes to gather the cells from curLoc, but for now to be consistent with GGML, just grab a larger chunk and mask
// 	key = key.TakeAxes(ctx, c.curLoc, 0).Reshape(ctx, 1, numKVHeads, cachedSize, kHeadDim)
// 	// key = key.AsStrided(ctx, []int{1, numKVHeads, cachedSize, kHeadDim}, []int{}, rowSize*c.curCellRange.min)

// 	// slog.Info("XXX Causal.Get after AsStrided", "key", key)
// 	// panic("XXX")

// 	// if c.config.PermutedV {
// 	// 	panic("permuted")
// 	// 	// TODO not converted
// 	// 	vHeadDim := value.Dim(1)
// 	// 	elemSize := value.Stride(2)

// 	// 	value = value.AsStrided(ctx,
// 	// 		[]int{numKVHeads, vHeadDim, cachedSize},
// 	// 		[]int{value.Stride(0), value.Stride(1)},
// 	// 		elemSize*c.curCellRange.min,
// 	// 	)
// 	// } else {
// 	// vHeadDim := c.vHeadDims[c.curLayer]
// 	// rowSize := value.Stride(2)
// 	// slog.Info("XXX Causal.Get before AsStrided", "vHeadDim", vHeadDim, "rowSize", rowSize)
// 	// panic("XXX")

// 	// TODO we should use TakeAxes to gather the cells from curLoc, but for now to be consistent with GGML, just grab a larger chunk and mask
// 	value = value.TakeAxes(ctx, c.curLoc, 0).Reshape(ctx, 1, numKVHeads, cachedSize, vHeadDim)
// 	// value = value.AsStrided(ctx, []int{1, numKVHeads, cachedSize, vHeadDim}, []int{}, rowSize*c.curCellRange.min)

// 	// slog.Info("XXX Causal.Get after AsStrided", "value", value)
// 	// panic("XXX")

// 	// }

// 	// // TODO The mask changes from X,X to 1,X, and with the Row-order change
// 	// // the 1 becomes trailing and messes up later operations
// 	// // This isn't the right solution, but works around it...
// 	// if c.curMask.Dim(1) == 1 {
// 	// 	return key, value, c.curMask.Transpose(ctx, 1, 0, 2, 3)
// 	// }
// 	// fmt.Fprintln(os.Stderr, key.ToString())
// 	// fmt.Fprintln(os.Stderr, value.ToString())
// 	// panic("XXX")
// 	slog.Info("XXX Mask", "curLayer", c.curLayer, "shape", c.curMask.Shape())

// 	return key, value, c.curMask
// }

// func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
// 	kHeadDim := key.Dim(3)
// 	vHeadDim := value.Dim(3)
// 	numKVHeads := key.Dim(1)
// 	batchSize := key.Dim(2)
// 	kCellSize := kHeadDim * numKVHeads
// 	vCellSize := vHeadDim * numKVHeads

// 	// slog.Info("XXX Causal.Put", "key", key, "value", value)
// 	slog.Info("XXX Causal.Put", "kHeadDim", kHeadDim, "vHeadDim", vHeadDim, "numKVHeads", numKVHeads, "batchSize", batchSize)
// 	// panic("XXX")

// 	if c.curBatchSize != batchSize {
// 		panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, batchSize))
// 	}

// 	// slog.Info("XXX", "c.ctxs", c.ctxs, "c.curLayer", c.curLayer, "backend", c.backend)
// 	if _, ok := c.ctxs[c.curLayer]; !ok {
// 		slog.Info("XXX Causal.Put creating new context", "c.curLayer", c.curLayer)
// 		c.ctxs[c.curLayer] = c.backend.NewContext().Layer(c.curLayer)
// 	}

// 	if _, ok := c.keys[c.curLayer]; !ok {
// 		slog.Info("XXX Causal.Put allocating keys", "c.curLayer", c.curLayer, "shape", []int{len(c.cells), kCellSize})

// 		c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), kCellSize)
// 		c.kHeadDims[c.curLayer] = kHeadDim
// 		c.vHeadDims[c.curLayer] = vHeadDim
// 		c.numKVHeads[c.curLayer] = numKVHeads
// 	}

// 	if _, ok := c.values[c.curLayer]; !ok {
// 		// if c.config.PermutedV {
// 		// 	c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, numKVHeads, vHeadDim, len(c.cells))
// 		// } else {
// 		c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vCellSize)
// 		// }
// 	}

// 	key = key.Reshape(ctx, batchSize, 1, kCellSize) //.Contiguous(ctx, false) // TODO contiguous may not be needed

// 	// slog.Info("XXX Causal.Put after reshape", "keyCache", keyCache)
// 	// panic("XXX")
// 	// curLoc := 0 // TODO c.curLoc is now a tensor
// 	// kSize := numKVHeads * kHeadDim
// 	// vSize := numKVHeads * vHeadDim
// 	// start := []int{int(curLoc), 0}
// 	// kStop := []int{int(curLoc + batchSize), int(kSize)}
// 	// vStop := []int{int(curLoc + batchSize), int(vSize)}
// 	// strides := []int{1, 1}

// 	// slog.Info("XXX Causal.Put Key SliceUpdate", "keyCache", keyCache)
// 	// slog.Info("XXX Causal.Put Key SliceUpdate", "key", key)

// 	// slog.Info("XXX Causal.Put Key SliceUpdate", "start", start, "kStop", kStop, "strides", strides)

// 	// ctx.Forward(c.keys[c.curLayer].SliceUpdate(ctx, key, start, kStop, strides))
// 	ctx.Forward(c.keys[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLoc}, key, []int{0}))
// 	// fmt.Fprintln(os.Stderr, keyCache.ToString())
// 	// panic("input value")

// 	// fmt.Fprintln(os.Stderr, t.ToString())
// 	// panic("XXX")

// 	// if c.config.PermutedV {
// 	// 	panic("permuted")
// 	// 	// TODO not adjusted
// 	// 	value = value.Reshape(ctx, vHeadDim*numKVHeads, 1, batchSize)
// 	// 	value = value.Transpose(ctx, 2, 0, 1, 3)

// 	// 	valueCache := c.values[c.curLayer]
// 	// 	valueCache = valueCache.Reshape(ctx, 1, len(c.cells), vHeadDim*numKVHeads)

// 	// 	ctx.Forward(valueCache.SliceUpdate(ctx, value, start, vStop, strides))
// 	// } else {
// 	value = value.Reshape(ctx, batchSize, 1, vCellSize) //.Contiguous(ctx, false) // TODO contiguous may not be needed
// 	// slog.Info("XXX Causal.Put Value SliceUpdate", "valueCache", valueCache)
// 	// slog.Info("XXX Causal.Put Value SliceUpdate", "value", value)
// 	// slog.Info("XXX Causal.Put Value SliceUpdate", "start", start, "vStop", vStop, "strides", strides)

// 	ctx.Forward(c.values[c.curLayer].Scatter(ctx, []ml.Tensor{c.curLoc}, value, []int{0}))
// 	// }
// 	// fmt.Fprintln(os.Stderr, c.keys[c.curLayer].ToString())
// 	// fmt.Fprintln(os.Stderr, c.values[c.curLayer].ToString())
// 	// panic("XXX")

// }

// func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) {
// 	seqRange := newRange()

// 	for i := range c.cells {
// 		// Remove the contents of dstSeq so that we only have the copied prefix, metadata will be reset at the end
// 		if slices.Contains(c.cells[i].sequences, dstSeq) {
// 			c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == dstSeq })
// 		}

// 		if slices.Contains(c.cells[i].sequences, srcSeq) && c.cells[i].pos < len {
// 			c.cells[i].sequences = append(c.cells[i].sequences, dstSeq)
// 			if i < seqRange.min {
// 				seqRange.min = i
// 			}
// 			if i > seqRange.max {
// 				seqRange.max = i
// 			}
// 		}
// 	}

// 	c.cellRanges[dstSeq] = seqRange
// }

// func (c *Causal) CanResume(seq int, pos int32) bool {
// 	if c.swaMemorySize == math.MaxInt32 {
// 		return true
// 	}

// 	seqRange, ok := c.cellRanges[seq]
// 	if !ok {
// 		return false
// 	}

// 	// for sliding window, check that the window of the new sequence is contained in
// 	// the window of what we are storing
// 	var first int32 = math.MaxInt32
// 	var last int32 = -1
// 	for i := seqRange.min; i <= seqRange.max; i++ {
// 		if slices.Contains(c.cells[i].sequences, seq) {
// 			first = min(first, c.cells[i].pos)
// 			last = max(last, c.cells[i].pos)
// 		}
// 	}

// 	if last == -1 {
// 		return false
// 	}

// 	posWindowStart := max(0, pos-c.swaWindowSize)
// 	return posWindowStart >= first && pos <= last+1
// }

// func (c *Causal) shift(seq int, beginIndex, offset int32) error {
// 	if c.shiftFn == nil {
// 		return ErrNotSupported
// 	}

// 	seqRange := c.cellRanges[seq]

// 	for start := seqRange.min; start <= seqRange.max; start += c.maxBatch {
// 		size := min(seqRange.max-start+1, c.maxBatch)
// 		offsets := make([]int32, size)

// 		var batchFirst, batchLast int

// 		batchFirst = -1
// 		for i := range offsets {
// 			cell := c.cells[start+i]

// 			if slices.Contains(cell.sequences, seq) && cell.pos >= beginIndex {
// 				offsets[i] = offset
// 				if batchFirst < 0 {
// 					batchFirst = i
// 				}
// 				batchLast = i
// 			}
// 		}

// 		if batchFirst < 0 {
// 			continue
// 		}

// 		offsets = offsets[batchFirst : batchLast+1]

// 		slog.Info("XXX Causal.shift creating new temporary context")
// 		ctx := c.backend.NewContext()
// 		kShift := ctx.Input().FromInts(offsets, len(offsets))

// 		for i, key := range c.keys {
// 			if key == nil {
// 				continue
// 			}

// 			kHeadDim := key.Dim(2)
// 			numKVHeads := key.Dim(1)
// 			rowSize := key.Stride(0)

// 			key = key.AsStrided(ctx,
// 				[]int{len(offsets), numKVHeads, kHeadDim},
// 				[]int{key.Stride(0), key.Stride(1)},
// 				rowSize*(start+batchFirst),
// 			)

// 			roped, err := c.shiftFn(ctx, i, key, kShift)
// 			if err != nil {
// 				ctx.Close()
// 				return err
// 			}

// 			ctx.Forward(roped.Copy(ctx, key))
// 		}

// 		ctx.Compute()
// 		ctx.Close()
// 	}

// 	return nil
// }

// func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error {
// 	// TODO(jessegross): We should check to see if removing the middle of the sequence will
// 	// cause the sliding window to encompass tokens that we no longer have. If so, then we
// 	// should return an error, which will trigger the runner to evaluate the full history and
// 	// rebuild the window. However, if we have multimodal inputs in our history, this reuse
// 	// results in use after free, so we don't do it for now.

// 	var offset int32
// 	if endIndex != math.MaxInt32 {
// 		offset = beginIndex - endIndex
// 	}

// 	seqRange := newRange()

// 	for i := range c.cells {
// 		if slices.Contains(c.cells[i].sequences, seq) {
// 			if c.cells[i].pos >= beginIndex && c.cells[i].pos < endIndex {
// 				c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
// 			} else {
// 				if c.cells[i].pos >= endIndex {
// 					if slices.ContainsFunc(c.cells[i].sequences, func(s int) bool { return s != seq }) {
// 						return errors.New("shifting cells shared by multiple sequences not supported")
// 					}

// 					c.cells[i].pos += offset
// 				}
// 				if i < seqRange.min {
// 					seqRange.min = i
// 				}
// 				if i > seqRange.max {
// 					seqRange.max = i
// 				}
// 			}
// 		}
// 	}

// 	if seqRange == newRange() {
// 		delete(c.cellRanges, seq)
// 		return nil
// 	}

// 	c.cellRanges[seq] = seqRange

// 	if endIndex != math.MaxInt32 {
// 		err := c.shift(seq, endIndex+offset, offset)
// 		if err != nil {
// 			return err
// 		}
// 	}

// 	return nil
// }