convert_gemma3n.go 6 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
package convert

import (
	"slices"
	"strings"

	"github.com/ollama/ollama/fs/ggml"
	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
	"gonum.org/v1/gonum/stat/distuv"
)

type gemma3nModel struct {
	ModelParameters

	TextModel struct {
		ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
		AltupActiveIdx            uint32    `json:"altup_active_idx"`
		AltupCoefClip             float32   `json:"altup_coef_clip"`
		AltupCorrectScale         bool      `json:"altup_correct_scale"`
		AltupLRMultiplier         float32   `json:"altup_lr_multiplier"`
		AltupNumInputs            uint32    `json:"altup_num_inputs"`
		HeadDim                   uint32    `json:"head_dim"`
		HiddenSize                uint32    `json:"hidden_size"`
		HiddenSizePerLayerInput   uint32    `json:"hidden_size_per_layer_input"`
		IntermediateSize          uint32    `json:"intermediate_size"`
		MaxPositionEmbeddings     uint32    `json:"max_position_embeddings"`
		NumAttentionHeads         uint32    `json:"num_attention_heads"`
		NumHiddenLayers           uint32    `json:"num_hidden_layers"`
		NumKeyValueHeads          uint32    `json:"num_key_value_heads"`
		NumKVSharedLayers         uint32    `json:"num_kv_shared_layers"`
		RMSNormEPS                float32   `json:"rms_norm_eps"`
		RopeLocalBaseFreq         float32   `json:"rope_local_base_freq"`
		RopeTheta                 float32   `json:"rope_theta"`
		SlidingWindow             uint32    `json:"sliding_window"`
		LayerTypes                []string  `json:"layer_types"`
	} `json:"text_config"`
	VisionModel struct{} `json:"vision_config"`
}

41
func (m *gemma3nModel) KV(t *Tokenizer) KV {
Michael Yang's avatar
Michael Yang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
	kv := m.ModelParameters.KV(t)
	kv["general.architecture"] = "gemma3n"
	kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
		norm := distuv.Normal{Mu: 0, Sigma: 1}
		for _, v := range m.TextModel.ActivationSparsityPattern {
			if !yield(float32(norm.Quantile(float64(v)))) {
				break
			}
		}
	})
	kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
	kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
	kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
	kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
	kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
	kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
	kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
	kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
	kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
		for _, t := range m.TextModel.LayerTypes {
			if !yield(t == "sliding_attention") {
				break
			}
		}
	})
	kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
	kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
	kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
	kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
	kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
	kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
	kv["gemma3n.head_dim"] = m.TextModel.HeadDim
	kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
	kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
	return kv
}

func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
	out, ts := mergeTensors(ts,
		merge{"altup_proj.*.weight", "altup_proj.weight"},
		merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
	)

	for _, t := range ts {
		switch {
		case strings.Contains(t.Name(), "audio_tower"),
			strings.Contains(t.Name(), "embed_audio"),
			strings.Contains(t.Name(), "vision_tower"),
			strings.Contains(t.Name(), "embed_vision"):
			// TODO: handle audio and vision towers
			continue
		case strings.Contains(t.Name(), "altup_predict_coef"),
			strings.Contains(t.Name(), "altup_correct_coef"):
			if m.TextModel.AltupCoefClip > 0 {
				t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
					dims := make([]int, len(shape))
					for i := range shape {
						dims[i] = int(shape[i])
					}

					var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))

					t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
					if err != nil {
						return nil, err
					}

					if err := t.Reshape(t.Shape().TotalSize()); err != nil {
						return nil, err
					}

					return native.VectorF32(t.(*tensor.Dense))
				})
			}
		}

		out = append(out, &ggml.Tensor{
			Name:     t.Name(),
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

func (m *gemma3nModel) Replacements() []string {
	return []string{
		"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
		"model.language_model.embed_tokens", "token_embd",
		"model.language_model.per_layer_model_projection", "per_layer_model_proj",
		"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
		"model.language_model.altup_unembed_projections", "altup_unembd_proj",
		"model.language_model.norm", "output_norm",
		"model.language_model.layers", "blk",

		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.q_norm", "attn_q_norm",
		"self_attn.k_proj", "attn_k",
		"self_attn.k_norm", "attn_k_norm",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"post_attention_layernorm", "post_attention_norm",
		"pre_feedforward_layernorm", "ffn_norm",
		"mlp.gate_proj", "ffn_gate",
		"mlp.up_proj", "ffn_up",
		"mlp.down_proj", "ffn_down",
		"post_feedforward_layernorm", "post_ffw_norm",
		"per_layer_input_gate", "inp_gate",
		"per_layer_projection", "proj",
		"post_per_layer_input_norm", "post_norm",
		"altup.", "altup_",
		"modality_router", "router",
		"prediction_coefs", "predict_coef",
		"correction_coefs", "correct_coef",
		"correct_output_scale", "correct_scale.weight",
		"laurel.", "laurel_",
		"linear_left", "l",
		"linear_right", "r",
		"post_laurel_norm", "post_norm",
	}
}