convert_deepseekocr.go 4.6 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
package convert

import (
	"fmt"

	"github.com/ollama/ollama/fs/ggml"
)

type deepseekocr struct {
	ModelParameters
	LanguageConfig struct {
		MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
		HiddenSize            uint32 `json:"hidden_size"`
		HiddenLayers          uint32 `json:"num_hidden_layers"`
		IntermediateSize      uint32 `json:"intermediate_size"`
		NumAttentionHeads     uint32 `json:"num_attention_heads"`
		NumKeyValueHeads      uint32 `json:"num_key_value_heads"`
		NumRoutedExperts      uint32 `json:"n_routed_experts"`
		NumSharedExperts      uint32 `json:"n_shared_experts"`
		NumExpertsPerToken    uint32 `json:"num_experts_per_tok"`
		FirstKDenseReplace    uint32 `json:"first_k_dense_replace"`
	} `json:"language_config"`

	VisionConfig struct {
		ImageSize uint32 `json:"image_size"`
		Width     struct {
			Vision struct {
				Heads     uint32 `json:"heads"`
				ImageSize uint32 `json:"image_size"`
				Layers    uint32 `json:"layers"`
				PatchSize uint32 `json:"patch_size"`
				Width     uint32 `json:"width"`
			} `json:"clip-l-14-224"`
			Sam struct {
				GlobalAttentionIndexes []int32 `json:"global_attn_indexes"`
				Heads                  uint32  `json:"heads"`
				Layers                 uint32  `json:"layers"`
				Width                  uint32  `json:"width"`
			} `json:"sam_vit_b"`
		}
	} `json:"vision_config"`
}

44
func (m *deepseekocr) KV(t *Tokenizer) KV {
Michael Yang's avatar
Michael Yang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
	kv := m.ModelParameters.KV(t)
	kv["general.architecture"] = "deepseekocr"
	kv["block_count"] = m.LanguageConfig.HiddenLayers
	kv["context_length"] = m.LanguageConfig.MaxPositionEmbeddings
	kv["embedding_length"] = m.LanguageConfig.HiddenSize
	kv["feed_forward_length"] = m.LanguageConfig.IntermediateSize
	kv["attention.head_count"] = m.LanguageConfig.NumAttentionHeads
	kv["attention.head_count_kv"] = m.LanguageConfig.NumKeyValueHeads
	kv["expert_count"] = m.LanguageConfig.NumRoutedExperts
	kv["expert_used_count"] = m.LanguageConfig.NumExpertsPerToken
	kv["leading_dense_block_count"] = m.LanguageConfig.FirstKDenseReplace

	kv["vision.block_count"] = m.VisionConfig.Width.Vision.Layers
	kv["vision.embedding_length"] = m.VisionConfig.Width.Vision.Width
	kv["vision.head_count"] = m.VisionConfig.Width.Vision.Heads
	kv["vision.image_size"] = m.VisionConfig.Width.Vision.ImageSize
	kv["vision.patch_size"] = m.VisionConfig.Width.Vision.PatchSize

	kv["sam.block_count"] = m.VisionConfig.Width.Sam.Layers
	kv["sam.embedding_length"] = m.VisionConfig.Width.Sam.Width
	kv["sam.head_count"] = m.VisionConfig.Width.Sam.Heads
	kv["sam.global_attention_indexes"] = m.VisionConfig.Width.Sam.GlobalAttentionIndexes
	return kv
}

func (m *deepseekocr) Tensors(s []Tensor) (out []*ggml.Tensor) {
	merges := make([]merge, m.LanguageConfig.HiddenLayers*3)
	for i := range m.LanguageConfig.HiddenLayers {
		merges[i*3+0] = merge{
			fmt.Sprintf("blk.%d.mlp.experts.*.gate_proj.weight", i),
			fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
		}
		merges[i*3+1] = merge{
			fmt.Sprintf("blk.%d.mlp.experts.*.up_proj.weight", i),
			fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
		}
		merges[i*3+2] = merge{
			fmt.Sprintf("blk.%d.mlp.experts.*.down_proj.weight", i),
			fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
		}
	}

	out, s = mergeTensors(s, merges...)
	for _, t := range s {
		out = append(out, &ggml.Tensor{
			Name:     t.Name(),
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}
	return out
}

func (m *deepseekocr) Replacements() []string {
	return []string{
		"model.embed_tokens", "token_embd",
		"model.layers", "blk",
		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"post_attention_layernorm", "ffn_norm",
		"mlp.gate_proj", "ffn_gate",
		"mlp.up_proj", "ffn_up",
		"mlp.down_proj", "ffn_down",
		"mlp.gate", "ffn_gate_inp",
		"mlp.shared_experts.gate_proj", "ffn_gate_shexp",
		"mlp.shared_experts.up_proj", "ffn_up_shexp",
		"mlp.shared_experts.down_proj", "ffn_down_shexp",
		"model.norm", "output_norm",
		"lm_head", "output",

		"model.vision_model", "v",
		"embeddings.patch_embedding", "patch_embd",
		"embeddings.class_embedding", "class_embd",
		"embeddings.position_embedding", "position_embd",
		"transformer.layers", "blk",

		"model.projector", "mm",
		"model.image_newline", "mm.image_newline",
		//nolint:misspell // this misspelling is upstream. fixing it breaks the model
		"model.view_seperator", "mm.view_seperator",

		"model.sam_model.patch_embed.proj", "s.patch_embd",
		"model.sam_model.pos_embed", "s.position_embd",
		"model.sam_model.blocks", "s.blk",
		"model.sam_model.neck", "s.neck",
		"model.sam_model.net_", "s.net_",
	}
}