convert_bert.go 4.49 KB
Newer Older
Michael Yang's avatar
bert  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
package convert

import (
	"cmp"
	"encoding/json"
	"io/fs"
	"path/filepath"
	"slices"
	"strings"

Michael Yang's avatar
Michael Yang committed
11
	"github.com/ollama/ollama/fs/ggml"
Michael Yang's avatar
bert  
Michael Yang committed
12
13
)

14
15
type bertModel struct {
	ModelParameters
Michael Yang's avatar
bert  
Michael Yang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	NLayer                uint32  `json:"n_layer"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	NCtx                  uint32  `json:"n_ctx"`
	HiddenSize            uint32  `json:"hidden_size"`
	NEmbd                 uint32  `json:"n_embd"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NInner                uint32  `json:"n_inner"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NHead                 uint32  `json:"n_head"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	LayerNormEPS          float32 `json:"layer_norm_eps"`
	LayerNormEpsilon      float32 `json:"layer_norm_epsilon"`
	NormEpsilon           float32 `json:"norm_epsilon"`
31
	normalizeEmbeddings   bool
Michael Yang's avatar
bert  
Michael Yang committed
32
33
34
35
36

	PoolingType uint32
}

var (
37
38
	_ ModelConverter = (*bertModel)(nil)
	_ moreParser     = (*bertModel)(nil)
Michael Yang's avatar
bert  
Michael Yang committed
39
40
)

41
func (p *bertModel) parseMore(fsys fs.FS) error {
Michael Yang's avatar
bert  
Michael Yang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
	bts, err := fs.ReadFile(fsys, "modules.json")
	if err != nil {
		return err
	}

	var modules []struct {
		Type string `json:"type"`
		Path string `json:"path"`
	}

	if err := json.Unmarshal(bts, &modules); err != nil {
		return err
	}

	var pooling string
	for _, m := range modules {
58
59
		switch m.Type {
		case "sentence_transformers.models.Pooling":
Michael Yang's avatar
bert  
Michael Yang committed
60
			pooling = m.Path
61
62
		case "sentence_transformers.models.Normalize":
			p.normalizeEmbeddings = true
Michael Yang's avatar
bert  
Michael Yang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
		}
	}

	if pooling != "" {
		bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
		if err != nil {
			return err
		}

		var pc struct {
			PoolingModeCLSToken   bool `json:"pooling_mode_cls_token"`
			PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
		}

		if err := json.Unmarshal(bts, &pc); err != nil {
			return err
		}

		if pc.PoolingModeMeanTokens {
			p.PoolingType = 1
		} else if pc.PoolingModeCLSToken {
			p.PoolingType = 2
		}
	}

	return nil
}

91
func (p *bertModel) KV(t *Tokenizer) KV {
92
	kv := p.ModelParameters.KV(t)
Michael Yang's avatar
bert  
Michael Yang committed
93
94
95
	kv["general.architecture"] = "bert"
	kv["bert.attention.causal"] = false
	kv["bert.pooling_type"] = p.PoolingType
96
	kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
Michael Yang's avatar
bert  
Michael Yang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

	kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
		kv["bert.context_length"] = contextLength
	}

	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
		kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
	}

	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
		kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
	}

	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
		kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
		kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	kv["tokenizer.ggml.model"] = "bert"
	kv["tokenizer.ggml.token_type_count"] = uint32(2)

	// convert to phantom space tokens
	for i, e := range t.Tokens {
		if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
			// noop
		} else if strings.HasPrefix(e, "##") {
			t.Tokens[i] = e[2:]
		} else {
			t.Tokens[i] = "\u2581" + e
		}
	}

	kv["tokenizer.ggml.tokens"] = t.Tokens

	return kv
}

139
140
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
Michael Yang's avatar
bert  
Michael Yang committed
141
142
143
144
145
146
147
148
149
	for _, t := range ts {
		if slices.Contains([]string{
			"embeddings.position_ids",
			"pooler.dense.weight",
			"pooler.dense.bias",
		}, t.Name()) {
			continue
		}

150
		out = append(out, &ggml.Tensor{
Michael Yang's avatar
Michael Yang committed
151
			Name:     t.Name(),
Michael Yang's avatar
bert  
Michael Yang committed
152
153
154
155
156
157
158
159
160
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

161
func (bertModel) Replacements() []string {
Michael Yang's avatar
Michael Yang committed
162
	return []string{
Michael Yang's avatar
bert  
Michael Yang committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
		"encoder.layer", "blk",
		"encoder.layers", "blk",
		"embeddings.word_embeddings", "token_embd",
		"embeddings.token_type_embeddings", "token_types",
		"embeddings.LayerNorm", "token_embd_norm",
		"embeddings.position_embeddings", "position_embd",
		"attention.self.query", "attn_q",
		"attention.self.key", "attn_k",
		"attention.self.value", "attn_v",
		"attention.output.dense", "attn_output",
		"attention.output.LayerNorm", "attn_output_norm",
		"intermediate.dense", "ffn_up",
		"output.dense", "ffn_down",
		"output.LayerNorm", "layer_output_norm",
Michael Yang's avatar
Michael Yang committed
177
	}
Michael Yang's avatar
bert  
Michael Yang committed
178
}