llama.go 19.6 KB
Newer Older
1
2
package llama

3
4
//go:generate make -j 8

5
6
7
/*
#cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
#cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#cgo amd64,avx CFLAGS: -mavx
#cgo amd64,avx CXXFLAGS: -mavx
#cgo amd64,avx2 CFLAGS: -mavx2 -mfma
#cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma
#cgo amd64,f16c CFLAGS: -mf16c
#cgo amd64,f16c CXXFLAGS: -mf16c
#cgo amd64,fma CFLAGS: -mfma
#cgo amd64,fma CXXFLAGS: -mfma
#cgo avx CFLAGS: -mavx
#cgo avx CXXFLAGS: -mavx
#cgo avx2 CFLAGS: -mavx2 -mfma -mf16c
#cgo avx2 CXXFLAGS: -mavx2 -mfma -mf16c
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
26
27
28
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 LDFLAGS: -framework Foundation
29
30
31
#cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
32
33
34
#cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
#cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS
#cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
35
36
37
#cgo linux CFLAGS: -D_GNU_SOURCE
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
38
39
40
41
42
43
44
45
46
47
48
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
#cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt -lresolv
#cgo linux,rocm LDFLAGS: -L/opt/rocm/lib -lpthread -ldl -lrt -lresolv
#cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
49
50
#cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602
#cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602
51
#cgo windows LDFLAGS: -lmsvcrt
52
53
#cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
54
55
56
57
58
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64
#cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64
59
60
61
62
63
64
#cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt
#cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas

#include <stdlib.h>
#include "llama.h"
#include "clip.h"
65
#include "ggml.h"
66
#include "llava.h"
67
#include "mllama.h"
68
69
70
#include "sampling_ext.h"

bool llamaProgressCallback(float progress, void *user_data);
71
72
73
74
75
76
77
78
79
80
81

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
82
83
84
85
86
87
88
89
90
*/
import "C"

import (
	_ "embed"
	"errors"
	"fmt"
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
91
	"slices"
92
93
94
95
96
97
98
99
100
101
102
	"strings"
	"unsafe"
)

var CpuFeatures = ""

func BackendInit() {
	C.llama_backend_init()
}

func PrintSystemInfo() string {
103
104
105
106
107
108
109
110
111
112
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
113
114
}

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
type ContextParams struct {
	c C.struct_llama_context_params
}

func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool) ContextParams {
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
	return ContextParams{c: params}
}

type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
		return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
	embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
207
208
209
210
211
212
	embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

233
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

263
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
264
	if m.c == nil {
265
266
267
268
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
269
270
271
272
273
274
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

275
276
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
277
278
279
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
280
	if c.c == nil {
281
282
283
284
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
}

func (m *Model) NumVocab() int {
	return int(C.llama_n_vocab(m.c))
}

func (m *Model) TokenIsEog(token int) bool {
	return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}

func (m *Model) AddBOSToken() bool {
	return bool(C.llama_add_bos_token(m.c))
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

	loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
304
305
306
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

	err := -1
	if loraAdapter != nil {
		err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

type Batch struct {
	c         C.struct_llama_batch
	batchSize int
322
	maxSeq    int
323
324
325
	embedSize int
}

326
327
328
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
329
330
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
331
332
333
334
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
335
	}
Jesse Gross's avatar
Jesse Gross committed
336
337
338
339
340
341
342
343
344
345
346
347

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
348
349
}

350
351
352
353
354
355
356
357
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

358
359
360
361
362
363
364
365
366
367
368
369
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
370
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
371
	if !b.IsEmbedding() {
372
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
373
	} else {
374
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
375
	}
376
377
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
378
379

	for i, s := range seqIds {
380
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
381
382
383
	}

	if logits {
384
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
		m.c,
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
			m.c,
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
		m.c,
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
			m.c,
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

494
// vision processing
495
type ClipContext struct {
496
	c *C.struct_clip_ctx
497
498
}

499
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
500
501
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
502
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
503
504
505
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
506

507
508
509
510
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
511
512
	}

513
	return &ClipContext{c: c}, nil
514
515
516
}

func (c *ClipContext) Free() {
517
	C.clip_free(c.c)
518
519
}

Jesse Gross's avatar
Jesse Gross committed
520
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
521
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
522
523
524
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
525

526
	numTokens := int(l.n_image_pos)
527
528
	numEmbed := llamaContext.Model().NEmbd()

529
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
530
531
532
533
534
535
536
537
538

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

539
	C.llava_image_embed_free(l)
540

Jesse Gross's avatar
Jesse Gross committed
541
	return embed, nil
542
543
}

544
545
546
547
548
549
550
551
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
552
553
554
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
555
556
557
558
559
560
561
562
563
564
565
566
567
568

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
569
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
570
571
572
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
573
574
575
576
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
577

578
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
579
580
581
582
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
583

584
585
	embed := make([][]float32, 1)
	embed[0] = rows
586

Jesse Gross's avatar
Jesse Gross committed
587
	return embed, nil
588
589
}

590
591
592
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
593

594
595
	return numTokens * numEmbed
}
596

597
598
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
599
600
}

601
602
603
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
604
	c *C.struct_gpt_sampler
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TfsZ           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
626
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
627
	var cparams C.struct_gpt_sampler_cparams
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.tfs_z = C.float(params.TfsZ)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.penalize_nl = C.bool(params.PenalizeNl)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
648
	context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
649
650
651
652
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

653
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) })
654

Jesse Gross's avatar
Jesse Gross committed
655
	return context, nil
656
657
658
}

func (s *SamplingContext) Reset() {
659
	C.gpt_sampler_creset(s.c)
660
661
}

662
663
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
	return int(C.gpt_sampler_csample(s.c, llamaContext.c, C.int(idx)))
664
665
}

666
667
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
	C.gpt_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
668
}