README.md 1.9 KB
Newer Older
xuxzh1's avatar
xuxzh1 committed
1
# <div align="center"><strong>Ollama</strong></div>
Jeffrey Morgan's avatar
Jeffrey Morgan committed
2

xuxzh1's avatar
xuxzh1 committed
3
## 简介
Jeffrey Morgan's avatar
Jeffrey Morgan committed
4

xuxzh1's avatar
xuxzh1 committed
5
Ollama可快速部署主流模型。
6

xuxzh1's avatar
xuxzh1 committed
7
## 安装
Jeffrey Morgan's avatar
Jeffrey Morgan committed
8

xuxzh1's avatar
xuxzh1 committed
9
### 1、使用源码编译方式安装
10

xuxzh1's avatar
xuxzh1 committed
11
#### 环境准备
12

xuxzh1's avatar
xuxzh1 committed
13
##### Docker
14

xuxzh1's avatar
xuxzh1 committed
15
16
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.4.1-ubuntu22.04-dtk25.04-py3.10-fixpy
17

xuxzh1's avatar
xuxzh1 committed
18
docker run -i -t -d  --device=/dev/kfd --privileged --network=host --device=/dev/dri --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home  -v /opt/hyhal:/opt/hyhal:ro -v --group-add video --shm-size 16G --name {容器名} {镜像ID}
19
20
```

xuxzh1's avatar
xuxzh1 committed
21
1、下载源码
22

xuxzh1's avatar
xuxzh1 committed
23
24
25
```bash
git clone -b 0.6.7 http://developer.sourcefind.cn/codes/OpenDAS/ollama.git --depth=1
cd ollama
Matt Williams's avatar
Matt Williams committed
26
27
```

xuxzh1's avatar
xuxzh1 committed
28
#### 编译
Jeffrey Morgan's avatar
Jeffrey Morgan committed
29

xuxzh1's avatar
xuxzh1 committed
30
##### 安装go
31

xuxzh1's avatar
xuxzh1 committed
32
33
34
35
```bash
wget wget https://golang.google.cn/dl/go1.24.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.24.1.linux-amd64.tar.gz
export PATH=$PATH:/usr/local/go/bin
Jeffrey Morgan's avatar
Jeffrey Morgan committed
36

xuxzh1's avatar
xuxzh1 committed
37
38
# 修改go下载源,提升速度(按需设置)
go env -w GOPROXY=https://goproxy.cn,direct
Jeffrey Morgan's avatar
Jeffrey Morgan committed
39
40
```

xuxzh1's avatar
xuxzh1 committed
41
##### 运行编译
42

xuxzh1's avatar
xuxzh1 committed
43
44
45
```bash
cmake -B build
cmake --build build --parallel 16
46
47
```

xuxzh1's avatar
xuxzh1 committed
48
## 运行
49

xuxzh1's avatar
xuxzh1 committed
50
51
52
53
54
55
56
```bash
export HSA_OVERRIDE_GFX_VERSION=设备型号(如: Z100L gfx906对应9.0.6;K100 gfx926对应9.2.6;K100AI gfx928对应9.2.8)
export ROCR_VISIBLE_DEVICES=所有设备号(0,1,2,3,4,5,6,...)/选择设备号
go run . serve  (选择可用设备,可通过上条命令输出结果查看)
# 新增fa和kv cache量化
OLLAMA_FLASH_ATTENTION=1 OLLAMA_KV_CACHE_TYPE=q4_0 go run . serve
go run . run llama3.1
57
58
```

xuxzh1's avatar
xuxzh1 committed
59
## deepseek-r1模型推理
Jeffrey Morgan's avatar
Jeffrey Morgan committed
60
61

```
xuxzh1's avatar
xuxzh1 committed
62
63
64
export HSA_OVERRIDE_GFX_VERSION=设备型号(如: Z100L gfx906对应9.0.6;K100 gfx926对应9.2.6;K100AI gfx928对应9.2.8)
go run . serve
go run . run deepseek-r1:671b
65
```
66

xuxzh1's avatar
xuxzh1 committed
67
更多使用方式请参考[原项目](https://github.com/ollama/ollama)
68

xuxzh1's avatar
xuxzh1 committed
69
注意:每次运行前请检查环境变量`HSA_OVERRIDE_GFX_VERSION`是否正确设置。
Sam's avatar
Sam committed
70

xuxzh1's avatar
xuxzh1 committed
71
## 参考资料
72

xuxzh1's avatar
xuxzh1 committed
73
* https://github.com/ollama/ollama