server.go 53.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package llm

import (
	"bufio"
	"bytes"
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"log"
	"log/slog"
	"math/rand"
	"net"
	"net/http"
	"os"
	"os/exec"
	"path/filepath"
	"runtime"
20
	"slices"
Jesse Gross's avatar
Jesse Gross committed
21
	"sort"
22
23
	"strconv"
	"strings"
24
	"sync"
25
26
	"time"

Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/discover"
31
	"github.com/ollama/ollama/envconfig"
32
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
33
	"github.com/ollama/ollama/fs/ggml"
34
	"github.com/ollama/ollama/llama"
35
	"github.com/ollama/ollama/logutil"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/ml"
37
	"github.com/ollama/ollama/model"
38
39
)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
type filteredEnv []string

func (e filteredEnv) LogValue() slog.Value {
	var attrs []slog.Attr
	for _, env := range e {
		if key, value, ok := strings.Cut(env, "="); ok {
			switch {
			case strings.HasPrefix(key, "OLLAMA_"),
				strings.HasPrefix(key, "CUDA_"),
				strings.HasPrefix(key, "ROCR_"),
				strings.HasPrefix(key, "ROCM_"),
				strings.HasPrefix(key, "HIP_"),
				strings.HasPrefix(key, "GPU_"),
				strings.HasPrefix(key, "HSA_"),
				strings.HasPrefix(key, "GGML_"),
				slices.Contains([]string{
					"PATH",
					"LD_LIBRARY_PATH",
					"DYLD_LIBRARY_PATH",
				}, key):
				attrs = append(attrs, slog.String(key, value))
			}
		}
	}
	return slog.GroupValue(attrs...)
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
67
type LlamaServer interface {
Jesse Gross's avatar
Jesse Gross committed
68
	ModelPath() string
69
	Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
70
71
72
	Ping(ctx context.Context) error
	WaitUntilRunning(ctx context.Context) error
	Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
73
	Embedding(ctx context.Context, input string) ([]float32, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
74
75
76
	Tokenize(ctx context.Context, content string) ([]int, error)
	Detokenize(ctx context.Context, tokens []int) (string, error)
	Close() error
Jesse Gross's avatar
Jesse Gross committed
77
78
	VRAMSize() uint64 // Total VRAM across all GPUs
	TotalSize() uint64
79
	VRAMByGPU(id ml.DeviceID) uint64
80
	Pid() int
81
82
83
	GetPort() int
	GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
	HasExited() bool
Daniel Hiltgen's avatar
Daniel Hiltgen committed
84
85
}

Jesse Gross's avatar
Jesse Gross committed
86
// llmServer is an instance of a runner hosting a single model
Daniel Hiltgen's avatar
Daniel Hiltgen committed
87
type llmServer struct {
88
89
90
91
92
93
	port        int
	cmd         *exec.Cmd
	done        chan error // Channel to signal when the process exits
	status      *StatusWriter
	options     api.Options
	numParallel int
94
	modelPath   string
95

Jesse Gross's avatar
Jesse Gross committed
96
97
	loadRequest LoadRequest // Parameters used to initialize the runner

98
99
100
	// llamaModel is an instance of the cgo llama.cpp model definition
	// nil if this server is running the new engine
	llamaModel     *llama.Model
Jesse Gross's avatar
Jesse Gross committed
101
	llamaModelLock *sync.Mutex
102
103
104
105

	// textProcessor handles text encoding/decoding for the model in the Ollama engine
	// nil if this server is running the llama.cpp based engine
	textProcessor model.TextProcessor
Daniel Hiltgen's avatar
Daniel Hiltgen committed
106

Jesse Gross's avatar
Jesse Gross committed
107
108
	totalLayers  uint64
	loadStart    time.Time // Record how long it took the model to load
109
	loadProgress float32
Daniel Hiltgen's avatar
Daniel Hiltgen committed
110
111

	sem *semaphore.Weighted
112
113
}

Jesse Gross's avatar
Jesse Gross committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
type llamaServer struct {
	llmServer

	ggml     *ggml.GGML
	gpus     discover.GpuInfoList // The set of GPUs covered by the memory estimate
	estimate MemoryEstimate
}

type ollamaServer struct {
	llmServer

	mem *ml.BackendMemory
}

128
129
130
131
132
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
Michael Yang's avatar
Michael Yang committed
133
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
134
135
136
137
	if _, err := os.Stat(model); err != nil {
		return nil, err
	}

138
139
140
141
142
143
	f, err := os.Open(model)
	if err != nil {
		return nil, err
	}
	defer f.Close()

144
	ggml, err := ggml.Decode(f, maxArraySize)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
145
146
	return ggml, err
}
147

Daniel Hiltgen's avatar
Daniel Hiltgen committed
148
// NewLlamaServer will run a server for the given GPUs
149
func NewLlamaServer(gpus discover.GpuInfoList, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
Jesse Gross's avatar
Jesse Gross committed
150
151
152
153
	var llamaModel *llama.Model
	var textProcessor model.TextProcessor
	var err error
	if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
154
155
156
157
158
		if len(projectors) == 0 {
			textProcessor, err = model.NewTextProcessor(modelPath)
		} else {
			err = errors.New("split vision models aren't supported")
		}
Jesse Gross's avatar
Jesse Gross committed
159
160
161
162
		if err != nil {
			// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
			slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
		}
163
	}
Jesse Gross's avatar
Jesse Gross committed
164
165
166
167
168
	if textProcessor == nil {
		llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
		if err != nil {
			return nil, err
		}
169
170
	}

Jesse Gross's avatar
Jesse Gross committed
171
172
173
174
175
	// Verify the requested context size is <= the model training size
	trainCtx := f.KV().ContextLength()
	if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
		slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "n_ctx_train", trainCtx)
		opts.NumCtx = int(trainCtx)
176
177
	}

178
179
	opts.NumBatch = min(opts.NumBatch, opts.NumCtx)

Jesse Gross's avatar
Jesse Gross committed
180
	loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
181

Jesse Gross's avatar
Jesse Gross committed
182
183
184
185
186
	defaultThreads := discover.GetSystemInfo().GetOptimalThreadCount()
	if opts.NumThread > 0 {
		loadRequest.NumThreads = opts.NumThread
	} else if defaultThreads > 0 {
		loadRequest.NumThreads = defaultThreads
187
	}
Michael Yang's avatar
Michael Yang committed
188

Jesse Gross's avatar
Jesse Gross committed
189
	// TODO - NUMA support currently doesn't work properly
190
191

	if opts.MainGPU > 0 {
Jesse Gross's avatar
Jesse Gross committed
192
		loadRequest.MainGPU = opts.MainGPU
193
194
	}

Jesse Gross's avatar
Jesse Gross committed
195
196
	if len(projectors) > 0 && llamaModel != nil {
		loadRequest.ProjectorPath = projectors[0]
197
198
	}

199
200
	fa := envconfig.FlashAttention(f.FlashAttention())

Jesse Gross's avatar
Jesse Gross committed
201
202
	// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
	// that can handle it.
203
204
205
206
	if fa && !gpus.FlashAttentionSupported() {
		slog.Warn("flash attention enabled but not supported by gpu")
		fa = false
	}
Sam's avatar
Sam committed
207

Michael Yang's avatar
Michael Yang committed
208
	if fa && !f.SupportsFlashAttention() {
209
210
211
212
		slog.Warn("flash attention enabled but not supported by model")
		fa = false
	}

213
	kvct := strings.ToLower(envconfig.KvCacheType())
214
215
216

	if fa {
		slog.Info("enabling flash attention")
Jesse Gross's avatar
Jesse Gross committed
217
		loadRequest.FlashAttention = true
218
219
220

		// Flash Attention also supports kv cache quantization
		// Enable if the requested and kv cache type is supported by the model
221
		if f.SupportsKVCacheType(kvct) {
Jesse Gross's avatar
Jesse Gross committed
222
			loadRequest.KvCacheType = kvct
223
224
		} else {
			slog.Warn("kv cache type not supported by model", "type", kvct)
Sam's avatar
Sam committed
225
		}
226
227
228
	} else if kvct != "" && kvct != "f16" {
		slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
	}
229

Jesse Gross's avatar
Jesse Gross committed
230
	availableLibs := make(map[string]string)
231
232
	if entries, err := os.ReadDir(discover.LibOllamaPath); err == nil {
		for _, entry := range entries {
Jesse Gross's avatar
Jesse Gross committed
233
			availableLibs[entry.Name()] = filepath.Join(discover.LibOllamaPath, entry.Name())
Michael Yang's avatar
Michael Yang committed
234
235
236
		}
	}

Jesse Gross's avatar
Jesse Gross committed
237
238
239
240
241
	var gpuLibs []string
	for _, gpu := range gpus {
		gpuLibs = append(gpuLibs, gpu.RunnerName())
	}

Michael Yang's avatar
Michael Yang committed
242
	requested := envconfig.LLMLibrary()
Jesse Gross's avatar
Jesse Gross committed
243
	if availableLibs[requested] != "" {
Michael Yang's avatar
Michael Yang committed
244
		slog.Info("using requested gpu library", "requested", requested)
Jesse Gross's avatar
Jesse Gross committed
245
		gpuLibs = []string{requested}
Michael Yang's avatar
Michael Yang committed
246
247
248
	}

	var compatible []string
Jesse Gross's avatar
Jesse Gross committed
249
250
251
252
253
254
255
256
257
258
259
260
261
	for _, gpuLib := range gpuLibs {
		var matchingLibs []string
		for k := range availableLibs {
			// exact match first
			if k == gpuLib {
				matchingLibs = append([]string{k}, matchingLibs...)
				continue
			}

			// then match the family (e.g. 'cuda')
			if strings.Split(k, "_")[0] == strings.Split(gpuLib, "_")[0] {
				matchingLibs = append(matchingLibs, k)
			}
262
		}
263

Jesse Gross's avatar
Jesse Gross committed
264
265
		if len(matchingLibs) > 0 {
			compatible = append(compatible, matchingLibs[0])
Daniel Hiltgen's avatar
Daniel Hiltgen committed
266
		}
Michael Yang's avatar
Michael Yang committed
267
	}
Jesse Gross's avatar
Jesse Gross committed
268

269
270
271
272
273
274
275
276
277
	exe, err := os.Executable()
	if err != nil {
		return nil, fmt.Errorf("unable to lookup executable path: %w", err)
	}

	if eval, err := filepath.EvalSymlinks(exe); err == nil {
		exe = eval
	}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
278
	// iterate through compatible GPU libraries such as 'cuda_v12', 'rocm', etc.
Michael Yang's avatar
Michael Yang committed
279
280
281
	// adding each library's respective path to the LD_LIBRARY_PATH, until finally running
	// without any LD_LIBRARY_PATH flags
	for {
282
283
284
285
286
287
288
289
290
		port := 0
		if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
			var l *net.TCPListener
			if l, err = net.ListenTCP("tcp", a); err == nil {
				port = l.Addr().(*net.TCPAddr).Port
				l.Close()
			}
		}
		if port == 0 {
291
			slog.Debug("ResolveTCPAddr failed, using random port")
292
293
			port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
		}
Jesse Gross's avatar
Jesse Gross committed
294
		params := []string{"runner"}
295
296
297
		if textProcessor != nil {
			// New engine
			// TODO - if we have failure to load scenarios, add logic to retry with the old runner
Jesse Gross's avatar
Jesse Gross committed
298
			params = append(params, "--ollama-engine")
Jesse Gross's avatar
Jesse Gross committed
299
		}
Jesse Gross's avatar
Jesse Gross committed
300
301
		params = append(params, "--model", modelPath)
		params = append(params, "--port", strconv.Itoa(port))
302

303
304
305
		var pathEnv string
		switch runtime.GOOS {
		case "windows":
306
			pathEnv = "PATH"
307
308
309
310
		case "darwin":
			pathEnv = "DYLD_LIBRARY_PATH"
		default:
			pathEnv = "LD_LIBRARY_PATH"
311
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
312

313
314
315
		// Note: we always put our dependency paths first
		// since these are the exact version we compiled/linked against
		libraryPaths := []string{discover.LibOllamaPath}
316
		if libraryPath, ok := os.LookupEnv(pathEnv); ok {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
317
			libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
318
319
		}

320
		ggmlPaths := []string{discover.LibOllamaPath}
Jesse Gross's avatar
Jesse Gross committed
321
322
		for _, c := range compatible {
			if libpath, ok := availableLibs[c]; ok {
Michael Yang's avatar
Michael Yang committed
323
				slog.Debug("adding gpu library", "path", libpath)
324
				libraryPaths = append([]string{libpath}, libraryPaths...)
325
				ggmlPaths = append(ggmlPaths, libpath)
Michael Yang's avatar
Michael Yang committed
326
327
328
			}
		}

Jesse Gross's avatar
Jesse Gross committed
329
330
331
332
		for _, gpu := range gpus {
			if gpu.DependencyPath != nil {
				slog.Debug("adding gpu dependency paths", "paths", gpu.DependencyPath)
				libraryPaths = append(gpu.DependencyPath, libraryPaths...)
333
				ggmlPaths = append(ggmlPaths, gpu.DependencyPath...)
Jesse Gross's avatar
Jesse Gross committed
334
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
335
336
		}

Michael Yang's avatar
Michael Yang committed
337
338
339
		// finally, add the root library path
		libraryPaths = append(libraryPaths, discover.LibOllamaPath)

Jesse Gross's avatar
Jesse Gross committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
		s := llmServer{
			port:           port,
			cmd:            exec.Command(exe, params...),
			status:         NewStatusWriter(os.Stderr),
			options:        opts,
			modelPath:      modelPath,
			loadRequest:    loadRequest,
			llamaModel:     llamaModel,
			llamaModelLock: &sync.Mutex{},
			textProcessor:  textProcessor,
			numParallel:    numParallel,
			sem:            semaphore.NewWeighted(int64(numParallel)),
			totalLayers:    f.KV().BlockCount() + 1,
			loadStart:      time.Now(),
			done:           make(chan error, 1),
355
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
356

357
		s.cmd.Env = os.Environ()
358
359
		s.cmd.Stdout = os.Stdout
		s.cmd.Stderr = s.status
360
		s.cmd.SysProcAttr = LlamaServerSysProcAttr
361

362
363
		s.cmd.Env = append(s.cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ggmlPaths, string(filepath.ListSeparator)))

364
		// Always filter down the set of GPUs in case there are any unsupported devices that might crash
365
		envWorkarounds := gpus.GetVisibleDevicesEnv()
366
367
		pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))

Jesse Gross's avatar
Jesse Gross committed
368
		// Update or add the path variable with our adjusted version
369
		pathNeeded := true
370
		envWorkaroundDone := make([]bool, len(envWorkarounds))
371
372
373
374
375
		for i := range s.cmd.Env {
			cmp := strings.SplitN(s.cmd.Env[i], "=", 2)
			if strings.EqualFold(cmp[0], pathEnv) {
				s.cmd.Env[i] = pathEnv + "=" + pathEnvVal
				pathNeeded = false
Daniel Hiltgen's avatar
Daniel Hiltgen committed
376
			} else if len(envWorkarounds) != 0 {
377
378
379
380
381
				for j, kv := range envWorkarounds {
					tmp := strings.SplitN(kv, "=", 2)
					if strings.EqualFold(cmp[0], tmp[0]) {
						s.cmd.Env[i] = kv
						envWorkaroundDone[j] = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
382
383
					}
				}
384
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
385
		}
386
387
		if pathNeeded {
			s.cmd.Env = append(s.cmd.Env, pathEnv+"="+pathEnvVal)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
388
		}
389
390
391
392
393
		for i, done := range envWorkaroundDone {
			if !done {
				s.cmd.Env = append(s.cmd.Env, envWorkarounds[i])
			}
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
394

Jesse Gross's avatar
Jesse Gross committed
395
		slog.Info("starting runner", "cmd", s.cmd)
396
		slog.Debug("subprocess", "", filteredEnv(s.cmd.Env))
397
398

		if err = s.cmd.Start(); err != nil {
Michael Yang's avatar
Michael Yang committed
399
			var msg string
400
401
402
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
			}
Michael Yang's avatar
Michael Yang committed
403
404
			err := fmt.Errorf("error starting runner: %v %s", err, msg)
			if len(compatible) == 0 {
405
406
407
				if llamaModel != nil {
					llama.FreeModel(llamaModel)
				}
Michael Yang's avatar
Michael Yang committed
408
409
410
411
412
				return nil, err
			}

			slog.Warn("unable to start runner with compatible gpu", "error", err, "compatible", compatible)
			compatible = compatible[1:]
413
414
415
			continue
		}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
416
417
		// reap subprocess when it exits
		go func() {
418
419
420
			err := s.cmd.Wait()
			// Favor a more detailed message over the process exit status
			if err != nil && s.status != nil && s.status.LastErrMsg != "" {
Michael Yang's avatar
Michael Yang committed
421
				slog.Error("llama runner terminated", "error", err)
422
423
424
				if strings.Contains(s.status.LastErrMsg, "unknown model") {
					s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
				}
Michael Yang's avatar
lint  
Michael Yang committed
425
				s.done <- errors.New(s.status.LastErrMsg)
426
427
428
			} else {
				s.done <- err
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
429
430
		}()

431
		if textProcessor != nil {
Jesse Gross's avatar
Jesse Gross committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
			return &ollamaServer{llmServer: s}, nil
		} else {
			return &llamaServer{llmServer: s, ggml: f}, nil
		}
	}
}

func (s *llmServer) ModelPath() string {
	return s.modelPath
}

type LoadOperation int

// The order of these constants are significant because we iterate over the operations. They
// should be in order of increasingly loading the model.
const (
	LoadOperationFit    LoadOperation = iota // Return memory requirements but do not allocate
	LoadOperationAlloc                       // Allocate memory but do not load the weights
	LoadOperationCommit                      // Load weights - further changes cannot be made after this
	LoadOperationClose                       // Close model and free memory
)

func (o LoadOperation) String() string {
	switch o {
	case LoadOperationFit:
		return "fit"
	case LoadOperationAlloc:
		return "alloc"
	case LoadOperationCommit:
		return "commit"
	case LoadOperationClose:
		return "close"
	default:
		return "unknown"
	}
}

type LoadRequest struct {
	Operation LoadOperation

	LoraPath       []string
	Parallel       int
	BatchSize      int
	FlashAttention bool
	KvSize         int
	KvCacheType    string
	NumThreads     int
	GPULayers      ml.GPULayersList
	MultiUserCache bool

	// Legacy fields - not used with the Ollama engine
	ProjectorPath string
	MainGPU       int
	UseMmap       bool
}

type LoadResponse struct {
	Success bool
	Memory  ml.BackendMemory
}

var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")

495
func (s *llamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error) {
Jesse Gross's avatar
Jesse Gross committed
496
497
498
499
500
501
502
503
504
505
506
	systemInfo := discover.GetSystemInfo()
	systemTotalMemory := systemInfo.System.TotalMemory
	systemFreeMemory := systemInfo.System.FreeMemory
	systemSwapFreeMemory := systemInfo.System.FreeSwap
	slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))

	g := pickBestFullFitByLibrary(s.ggml, s.modelPath, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
	if g == nil {
		if !requireFull {
			g = pickBestPartialFitByLibrary(s.ggml, []string{s.loadRequest.ProjectorPath}, s.loadRequest.LoraPath, s.options, gpus, s.numParallel)
		} else {
507
			slog.Info("model requires more memory than is currently available, evicting a model to make space", "estimate", s.estimate)
508
			return nil, ErrLoadRequiredFull
Jesse Gross's avatar
Jesse Gross committed
509
510
511
512
513
514
515
516
		}
	}

	gpus = g
	s.estimate = estimateGPULayers(gpus, s.ggml, []string{s.loadRequest.ProjectorPath}, s.options, s.numParallel)

	if len(gpus) > 1 || gpus[0].Library != "cpu" {
		switch {
517
		case gpus[0].Library == "Metal" && s.estimate.VRAMSize > systemInfo.System.TotalMemory:
Jesse Gross's avatar
Jesse Gross committed
518
519
520
			// disable partial offloading when model is greater than total system memory as this
			// can lead to locking up the system
			s.options.NumGPU = 0
521
		case gpus[0].Library != "Metal" && s.estimate.Layers == 0:
Jesse Gross's avatar
Jesse Gross committed
522
			// Don't bother loading into the GPU if no layers can fit
523
			gpus = discover.GpuInfoList{discover.GetCPUInfo()}
Jesse Gross's avatar
Jesse Gross committed
524
525
526
527
528
529
530
531
532
533
534
535
		case s.options.NumGPU < 0 && s.estimate.Layers > 0 && gpus[0].Library != "cpu":
			s.options.NumGPU = s.estimate.Layers
		}
	}

	// On linux and windows, over-allocating CPU memory will almost always result in an error
	// Darwin has fully dynamic swap so has no direct concept of free swap space
	if runtime.GOOS != "darwin" {
		systemMemoryRequired := s.estimate.TotalSize - s.estimate.VRAMSize
		available := systemInfo.System.FreeMemory + systemInfo.System.FreeSwap
		if systemMemoryRequired > available {
			slog.Warn("model request too large for system", "requested", format.HumanBytes2(systemMemoryRequired), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.System.TotalMemory), "free", format.HumanBytes2(systemInfo.System.FreeMemory), "swap", format.HumanBytes2(systemInfo.System.FreeSwap))
536
			return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(systemMemoryRequired), format.HumanBytes2(available))
Jesse Gross's avatar
Jesse Gross committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
		}
	}

	slog.Info("offload", "", s.estimate)

	s.gpus = gpus
	s.loadRequest.GPULayers = createGPULayers(s.estimate, s.ggml, gpus, s.options.NumGPU)

	// Mmap is only supported on the llama engine
	if s.textProcessor == nil {
		s.loadRequest.UseMmap = true

		// mmap has issues with partial offloading on metal
		for _, g := range gpus {
551
			if g.Library == "Metal" &&
Jesse Gross's avatar
Jesse Gross committed
552
553
554
555
556
557
558
559
560
561
				uint64(s.options.NumGPU) > 0 &&
				uint64(s.options.NumGPU) < s.ggml.KV().BlockCount()+1 {
				s.options.UseMMap = new(bool)
				*s.options.UseMMap = false
			}
		}

		// Windows CUDA should not use mmap for best performance
		// Linux  with a model larger than free space, mmap leads to thrashing
		// For CPU loads we want the memory to be allocated, not FS cache
562
		if (runtime.GOOS == "windows" && gpus[0].Library == "CUDA" && s.options.UseMMap == nil) ||
Jesse Gross's avatar
Jesse Gross committed
563
564
565
566
567
568
569
570
			(runtime.GOOS == "linux" && systemInfo.System.FreeMemory < s.estimate.TotalSize && s.options.UseMMap == nil) ||
			(gpus[0].Library == "cpu" && s.options.UseMMap == nil) ||
			(s.options.UseMMap != nil && !*s.options.UseMMap) {
			s.loadRequest.UseMmap = false
		}
	}

	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
571
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
572
573
574
575
	}

	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
576
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
577
578
579
580
581
582
583
584
585
586
	}

	// On the Ollama engine, we can print out a summary of the memory allocations.
	// We don't have this for the llama engine but it does something similar itself.
	if s.textProcessor != nil {
		resp.Memory.Log(slog.LevelInfo)
	}

	if !resp.Success {
		slog.Warn("failed to allocate memory for model", "memory", resp.Memory)
587
		return nil, errors.New("failed to allocate memory for model")
Jesse Gross's avatar
Jesse Gross committed
588
589
590
591
592
593
	}

	// The llama engine does its memory allocations together with model loading, so we
	// need to wait until it is done to ensure that we have accurate memory data before
	// loading the next model
	if s.textProcessor == nil {
594
		return uniqueDeviceIDs(s.loadRequest.GPULayers), s.WaitUntilRunning(ctx)
Jesse Gross's avatar
Jesse Gross committed
595
	} else {
596
		return uniqueDeviceIDs(s.loadRequest.GPULayers), nil
Jesse Gross's avatar
Jesse Gross committed
597
598
599
600
601
602
603
604
	}
}

// createGPULayers maps from the tensor splits assigned by the memory estimates to explicit assignment
// of particular layers onto GPUs
func createGPULayers(estimate MemoryEstimate, ggml *ggml.GGML, gpus discover.GpuInfoList, numGPU int) ml.GPULayersList {
	if numGPU <= 0 {
		return nil
605
	}
Jesse Gross's avatar
Jesse Gross committed
606
607
608

	gpuLayers := make(ml.GPULayersList, len(gpus))
	for i := range gpuLayers {
609
		gpuLayers[i].DeviceID = gpus[i].DeviceID
Jesse Gross's avatar
Jesse Gross committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
	}

	var sum float32
	splits := make([]float32, len(estimate.TensorSplit))
	// cumulative sum of all splits
	for i := range splits {
		sum += float32(estimate.TensorSplit[i])
		splits[i] = sum
	}

	if sum <= 0 {
		return nil
	}

	// normalize splits
	for i := range splits {
		splits[i] /= sum
	}

	blocks := int(ggml.KV().BlockCount())
	gpuRangeStart := max(0, blocks-numGPU)
	gpuRangeStop := min(gpuRangeStart+numGPU, blocks+1)
	for i := range blocks + 1 {
		if i < gpuRangeStart || i >= gpuRangeStop {
			continue
		}

		index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
		if index < 0 || index >= len(gpus) {
			continue
		}

		gpuLayers[index].Layers = append(gpuLayers[index].Layers, i)
	}

	return gpuLayers
}

// Load finds the optimal layout of layers to offload on GPUs based on no initial information about the size of the model
// It does this by:
// 1. Assigning the full model to the GPU with the largest available free memory
// 2. Attempting to allocate the layout and receiving the memory requirements in response
// 3. Creating a new layout based on the updated memory information
// 4. Going back to step 2 and looping until we either stabilize on a particular layout or discover that we have entered a cycle
//
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
// allowing for faster iteration, but may return less information.
657
658
659
//
// Returns the list of GPU IDs that were used in the final allocation on success
func (s *ollamaServer) Load(ctx context.Context, gpus discover.GpuInfoList, requireFull bool) ([]ml.DeviceID, error) {
Jesse Gross's avatar
Jesse Gross committed
660
661
662
663
664
	var success bool
	defer func() {
		if !success {
			s.initModel(ctx, LoadRequest{}, LoadOperationClose)
		}
665
666
667
		if s.mem != nil {
			s.mem.Log(slog.LevelInfo)
		}
Jesse Gross's avatar
Jesse Gross committed
668
669
670
671
672
673
674
675
676
677
678
679
	}()

	slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)

	systemInfo := discover.GetSystemInfo()
	systemTotalMemory := systemInfo.System.TotalMemory
	systemFreeMemory := systemInfo.System.FreeMemory
	systemSwapFreeMemory := systemInfo.System.FreeSwap
	slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))

	if !(len(gpus) == 1 && gpus[0].Library == "cpu") {
		for _, gpu := range gpus {
680
681
682
683
			available := gpu.FreeMemory - envconfig.GpuOverhead() - gpu.MinimumMemory
			if gpu.FreeMemory < envconfig.GpuOverhead()+gpu.MinimumMemory {
				available = 0
			}
684
			slog.Info("gpu memory", "id", gpu.ID, "library", gpu.Library,
685
				"available", format.HumanBytes2(available),
Jesse Gross's avatar
Jesse Gross committed
686
687
688
689
690
691
692
693
694
695
696
				"free", format.HumanBytes2(gpu.FreeMemory),
				"minimum", format.HumanBytes2(gpu.MinimumMemory),
				"overhead", format.HumanBytes2(envconfig.GpuOverhead()))
		}
	}

	pastAllocations := make(map[uint64]struct{})
	var backoff float32

	gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
	if err != nil {
697
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
698
699
700
	}

	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
701
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
702
703
704
705
706
707
708
709
710
	}

nextOperation:
	for operation := LoadOperationFit; operation < LoadOperationCommit; operation++ {
	nextLoad:
		for {
			s.loadRequest.GPULayers = gpuLayers
			resp, err := s.initModel(ctx, s.loadRequest, operation)
			if err != nil {
711
				return nil, err
Jesse Gross's avatar
Jesse Gross committed
712
713
714
715
716
717
718
719
720
721
722
			}

			resp.Memory.Log(slog.LevelDebug)
			slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

			pastAllocations[gpuLayers.Hash()] = struct{}{}
			s.mem = &resp.Memory

			for {
				newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
				if err != nil {
723
					return nil, err
Jesse Gross's avatar
Jesse Gross committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
				}

				slog.Debug("new layout created", "layers", newGPULayers)

				// We get additional memory information over time, which will reduce the number of
				// layers that can fit, so fewer layers is actually better. As long as we haven't seen
				// this layout before and it doesn't have more layers than the last one, we can keep
				// trying to see if we can do better.
				if _, ok := pastAllocations[newGPULayers.Hash()]; !ok && newGPULayers.Sum() <= gpuLayers.Sum() {
					gpuLayers = newGPULayers
					continue nextLoad
				}

				// If we are looping around a few different layouts due to graphs moving off and on
				// GPUs, make sure that we try out the intermediate states. For example, if we are
				// looping between offloading 39 and 41 layers, we should also check 40.
				//
				// This switches strategies to force an incremental number of layers to be offloaded
				// and checking the memory layout. If the allocation succeeds and creating a new layout
				// without forcing offload yields the same or greater number of layers offloaded, then
				// the trial is successful.
				//
				// This alternate strategy does not introduce the possibility of loops with the overall
				// state machine, as it exits this code block either with a successful result, moving
				// to the next operation or the original number of layers offloaded.
				if s.options.NumGPU < 0 && newGPULayers.Sum()-gpuLayers.Sum() > 1 {
					for i := newGPULayers.Sum() - 1; i >= gpuLayers.Sum(); i-- {
						slog.Debug("exploring intermediate layers", "layer", i)

						s.options.NumGPU = i
						newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
						s.options.NumGPU = -1
						if err != nil {
757
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
758
759
760
761
762
763
764
						}

						slog.Debug("new layout created", "layers", newGPULayers)

						s.loadRequest.GPULayers = newGPULayers
						resp, err = s.initModel(ctx, s.loadRequest, operation)
						if err != nil {
765
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
766
767
768
769
770
771
772
773
						}

						resp.Memory.Log(slog.LevelDebug)
						slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

						if resp.Success {
							verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
							if err != nil {
774
								return nil, err
Jesse Gross's avatar
Jesse Gross committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
							}

							slog.Debug("verifying layout", "layers", verifyGPULayers)

							if newGPULayers.Sum() <= verifyGPULayers.Sum() {
								gpuLayers = newGPULayers

								// Since we are going backwards (increasing the number of layers), ensure that
								// we can come back down if needed
								clear(pastAllocations)

								continue nextOperation
							}
						}
					}
				}

				// If we generated a layout a second time or go backwards, then we've converged. Use the last
				// layout before the repeat, which is already allocated.
				if resp.Success {
					continue nextOperation
				}

				if s.options.NumGPU >= 0 {
799
					return nil, fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
Jesse Gross's avatar
Jesse Gross committed
800
801
802
803
804
805
806
807
808
				}

				// Memory allocation failed even though we created a layout that we thought should
				// fit in available memory. This could happen if either our free memory reports
				// are incorrect or if available memory is changing between layout and allocation
				// time. Apply an exponential backoff to try to find the real amount of available
				// space.
				if backoff > 1 {
					slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
809
					return nil, errors.New("memory layout cannot be allocated")
Jesse Gross's avatar
Jesse Gross committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
				} else if backoff == 0 {
					backoff = 0.01
				} else {
					backoff *= 2
				}

				slog.Info("model layout did not fit, applying backoff", "backoff", fmt.Sprintf("%.2f", backoff))
			}
		}
	}

	s.loadRequest.GPULayers = gpuLayers
	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
824
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
825
826
827
828
829
830
831
	}

	success = resp.Success
	s.mem = &resp.Memory

	if !success {
		slog.Warn("failed to commit memory for model", "memory", resp.Memory)
832
		return nil, errors.New("failed to commit memory for model")
Jesse Gross's avatar
Jesse Gross committed
833
834
	}

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
	return uniqueDeviceIDs(gpuLayers), nil
}

func uniqueDeviceIDs(gpuLayers ml.GPULayersList) []ml.DeviceID {
	devices := []ml.DeviceID{}
	for _, layer := range gpuLayers {
		new := true
		for _, ID := range devices {
			if layer.DeviceID == ID {
				new = false
				break
			}
		}
		if new {
			devices = append(devices, layer.DeviceID)
		}
	}
	return devices
Jesse Gross's avatar
Jesse Gross committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
}

// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
// It does this by:
// - Calculating how much space each layer requires
// - Calculating how much space each GPU has available for layers, based on free memory and space occupied by the graph
// - Assigning layers
// - Ensuring that we don't exceed limits, such as requirements about partial offloading or system memory
func (s *ollamaServer) createLayout(systemInfo discover.SystemInfo, systemGPUs discover.GpuInfoList, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, error) {
	if s.totalLayers == 0 || s.options.NumGPU == 0 || len(systemGPUs) == 0 || (len(systemGPUs) == 1 && systemGPUs[0].Library == "cpu") {
		return ml.GPULayersList{}, nil
	}

	gpus := append(make(discover.GpuInfoList, 0, len(systemGPUs)), systemGPUs...)
	sort.Sort(sort.Reverse(discover.ByFreeMemory(gpus)))

	if memory == nil {
		memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
871
872
			Weights: make([]uint64, s.totalLayers),
			Cache:   make([]uint64, s.totalLayers),
Jesse Gross's avatar
Jesse Gross committed
873
874
875
876
877
878
		}}
	}

	layers := make([]uint64, len(memory.CPU.Weights))
	for i := range layers {
		for j := range memory.GPUs {
879
880
			layers[i] += memory.GPUs[j].Weights[i]
			layers[i] += memory.GPUs[j].Cache[i]
Jesse Gross's avatar
Jesse Gross committed
881
		}
882
883
		layers[i] += memory.CPU.Weights[i]
		layers[i] += memory.CPU.Cache[i]
884
		logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
Jesse Gross's avatar
Jesse Gross committed
885
886
887
888
889
890
891
892
893
894
895
896
	}

	gpuLayers := ml.GPULayersList{}
	for _, gl := range gpus.ByLibrary() {
		// If a GPU already has a graph allocated on it, then we should continue to use it.
		// Otherwise, we lose information that we got from previous allocations, which can
		// cause cycling. Plus, we get more information about required allocation from each
		// iteration, so it doesn't make sense that a later iteration would use fewer GPUs.
		lastUsedGPU := 0
		for i := range gl {
			found := false
			for j := range memory.GPUs {
897
				if gl[i].DeviceID == memory.GPUs[j].DeviceID {
898
					if memory.GPUs[j].Graph != 0 {
Jesse Gross's avatar
Jesse Gross committed
899
900
901
						lastUsedGPU = i
					}

902
					reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory + envconfig.GpuOverhead() + memory.GPUs[j].Graph
Jesse Gross's avatar
Jesse Gross committed
903
904
905
906
907
908
					if gl[i].FreeMemory > reserved {
						gl[i].FreeMemory -= reserved
					} else {
						gl[i].FreeMemory = 0
					}

909
					slog.Debug("available gpu", "id", gl[i].ID, "library", gl[i].Library,
Jesse Gross's avatar
Jesse Gross committed
910
911
912
						"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
						"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory),
						"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
913
						"graph", format.HumanBytes2(memory.GPUs[j].Graph))
Jesse Gross's avatar
Jesse Gross committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

					found = true
					break
				}
			}
			if !found {
				// The runner doesn't report seeing this GPU
				gl[i].FreeMemory = 0
			}
		}

		libraryGpuLayers := assignLayers(layers, gl, s.options.NumGPU, lastUsedGPU)
		if libraryGpuLayers.Sum() > gpuLayers.Sum() {
			gpuLayers = libraryGpuLayers
		}
	}

	// These sizes will only increase as we go through additional iterations and get additional information.
932
	cpuSize := memory.InputWeights + memory.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
933
934
935
	var vramSize uint64
	for _, gl := range gpuLayers {
		for _, gpu := range memory.GPUs {
936
			if gl.DeviceID == gpu.DeviceID {
937
				vramSize += gpu.Graph
Jesse Gross's avatar
Jesse Gross committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
				break
			}
		}
	}

nextLayer:
	for i := range layers {
		for _, g := range gpuLayers {
			for _, gl := range g.Layers {
				if i == gl {
					vramSize += layers[i]
					continue nextLayer
				}
			}
		}
		cpuSize += layers[i]
	}

	if requireFull {
		if gpuLayers.Sum() < len(layers) && (s.options.NumGPU < 0 || gpuLayers.Sum() < s.options.NumGPU) {
			return nil, ErrLoadRequiredFull
		}

		if cpuSize > systemInfo.System.FreeMemory {
			return nil, ErrLoadRequiredFull
		}
	}

	// On linux and windows, over-allocating CPU memory will almost always result in an error
	// Darwin has fully dynamic swap so has no direct concept of free swap space
	if runtime.GOOS != "darwin" {
		available := systemInfo.System.FreeMemory + systemInfo.System.FreeSwap
		if cpuSize > available {
			slog.Warn("model request too large for system", "requested", format.HumanBytes2(cpuSize), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.System.TotalMemory), "free", format.HumanBytes2(systemInfo.System.FreeMemory), "swap", format.HumanBytes2(systemInfo.System.FreeSwap))
			return nil, fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(cpuSize), format.HumanBytes2(available))
		}
	} else {
		if vramSize > systemInfo.System.TotalMemory {
			// disable partial offloading when model is greater than total system memory as this
			// can lead to locking up the system
			s.options.NumGPU = 0
			gpuLayers = ml.GPULayersList{}
		}
	}

	if gpuLayers.Sum() == 0 {
		slog.Debug("insufficient VRAM to load any model layers")
	}

	return gpuLayers, nil
}

// assignLayers packs the maximum number of layers onto the smallest set of GPUs and comes up with a layer assignment
func assignLayers(layers []uint64, gpus discover.GpuInfoList, requestedLayers int, lastUsedGPU int) (gpuLayers ml.GPULayersList) {
	// If we can't fit everything then prefer offloading layers other than the output layer
	for range 2 {
		// requestedLayers may be -1 if nothing was requested
		requestedLayers = min(len(layers), requestedLayers)

		if !envconfig.SchedSpread() {
			for i := lastUsedGPU; i < len(gpus); i++ {
				// Try to pack things into as few GPUs as possible
				forceRequest := i == len(gpus)-1
				gpuLayers = findBestFit(layers, gpus[:i+1], requestedLayers, forceRequest)
				if gpuLayers.Sum() == len(layers) || gpuLayers.Sum() == requestedLayers {
					break
				}
			}
		} else {
			gpuLayers = findBestFit(layers, gpus, requestedLayers, true)
		}

		// We only stop if we've gotten all of the layers - even if we got requestedLayers, we still
		// might want to try dropping the output layer.
		if gpuLayers.Sum() == len(layers) {
			return gpuLayers
		}

		layers = layers[:len(layers)-1]
	}

	return gpuLayers
}

// findBestFit binary searches to find the smallest capacity factor that can fit
// the max number of layers. The capacity factor is multiplied by the free space on
// each GPU and a small one will force even balancing.
func findBestFit(layers []uint64, gpus discover.GpuInfoList, requestedLayers int, forceRequest bool) (gpuLayers ml.GPULayersList) {
	var high float32 = 1
	var low float32 = 0

	// If we need to fulfill the requested number of layers, pretend we have almost infinite VRAM
	if requestedLayers >= 0 && forceRequest {
		high = 1000
	}

	bestAssignments := greedyFit(layers, gpus, high, requestedLayers)
	maxNumGPU := bestAssignments.Sum()
	if maxNumGPU == 0 {
		return bestAssignments
	}

	for high-low > 1e-6 {
		mid := (low + high) / 2
		assignments := greedyFit(layers, gpus, mid, requestedLayers)
		if assignments.Sum() == maxNumGPU {
			high = mid
			bestAssignments = assignments
		} else {
			low = mid
		}
	}

	return bestAssignments
}

// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
func greedyFit(layers []uint64, gpus discover.GpuInfoList, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
	device := len(gpus) - 1
1057
	gpuLayers = ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}
Jesse Gross's avatar
Jesse Gross committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
	freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
	for i := len(layers) - 1; i >= 0; i-- {
		if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
			break
		}

		for {
			if layers[i] <= freeSpace {
				gpuLayers[0].Layers = append([]int{i}, gpuLayers[0].Layers...)
				freeSpace -= layers[i]
				break
			}

			device--
			if device < 0 {
				return gpuLayers
			}
1075
			gpuLayers = append(ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}, gpuLayers...)
Jesse Gross's avatar
Jesse Gross committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
			freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
		}
	}

	return gpuLayers
}

// waitUntilRunnerLaunched sleeps until the runner subprocess is alive enough
// to respond to status requests
func (s *llmServer) waitUntilRunnerLaunched(ctx context.Context) error {
	for {
		_, err := s.getServerStatus(ctx)
		if err == nil {
			break
		}

		t := time.NewTimer(10 * time.Millisecond)
		select {
		case <-t.C:
			continue
		case <-ctx.Done():
			return ctx.Err()
		}
	}

	return nil
}

// initModel sends a load request to the runner based on the request operation (fit, alloc, commit)
// and parameters
func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation LoadOperation) (*LoadResponse, error) {
	req.Operation = operation

	data, err := json.Marshal(req)
	if err != nil {
		return nil, fmt.Errorf("error marshaling load data: %w", err)
	}

	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/load", s.port), bytes.NewBuffer(data))
	if err != nil {
		return nil, fmt.Errorf("error creating load request: %w", err)
	}
	r.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(r)
	if err != nil {
		return nil, fmt.Errorf("do load request: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return nil, fmt.Errorf("read load request: %w", err)
	}

	if resp.StatusCode >= 400 {
		log.Printf("llm load error: %s", body)
		return nil, fmt.Errorf("%s", body)
	}

	var llmResp LoadResponse
	if err := json.Unmarshal(body, &llmResp); err != nil {
		return nil, fmt.Errorf("load unmarshal encode response: %w", err)
	}

	return &llmResp, nil
1142
1143
1144
1145
1146
1147
}

type ServerStatus int

const ( // iota is reset to 0
	ServerStatusReady ServerStatus = iota
1148
	ServerStatusNoSlotsAvailable
Jesse Gross's avatar
Jesse Gross committed
1149
	ServerStatusLaunched
1150
1151
1152
1153
1154
	ServerStatusLoadingModel
	ServerStatusNotResponding
	ServerStatusError
)

1155
func (s ServerStatus) String() string {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1156
1157
1158
	switch s {
	case ServerStatusReady:
		return "llm server ready"
1159
	case ServerStatusNoSlotsAvailable:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1160
		return "llm busy - no slots available"
Jesse Gross's avatar
Jesse Gross committed
1161
1162
	case ServerStatusLaunched:
		return "llm server launched"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
	case ServerStatusLoadingModel:
		return "llm server loading model"
	case ServerStatusNotResponding:
		return "llm server not responding"
	default:
		return "llm server error"
	}
}

1172
1173
1174
type ServerStatusResponse struct {
	Status   ServerStatus `json:"status"`
	Progress float32      `json:"progress"`
1175
1176
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1177
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
1178
1179
1180
1181
1182
1183
	// Fail fast if its exited
	if s.cmd.ProcessState != nil {
		msg := ""
		if s.status != nil && s.status.LastErrMsg != "" {
			msg = s.status.LastErrMsg
		}
1184
1185
		if s.cmd.ProcessState.ExitCode() == -1 {
			// Most likely a signal killed it, log some more details to try to help troubleshoot
1186
			slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
1187
		}
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
		return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
	}

	req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
	if err != nil {
		return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
	}
	req.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(req)
	if err != nil {
		if errors.Is(err, context.DeadlineExceeded) {
Michael Yang's avatar
Michael Yang committed
1200
			return ServerStatusNotResponding, errors.New("server not responding")
1201
		}
1202
1203
1204
		if strings.Contains(err.Error(), "connection refused") {
			return ServerStatusNotResponding, errors.New("connection refused")
		}
1205
1206
1207
1208
1209
1210
1211
1212
1213
		return ServerStatusError, fmt.Errorf("health resp: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return ServerStatusError, fmt.Errorf("read health request: %w", err)
	}

1214
1215
	var ssr ServerStatusResponse
	if err := json.Unmarshal(body, &ssr); err != nil {
1216
1217
1218
		return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
	}

1219
1220
1221
1222
	switch ssr.Status {
	case ServerStatusLoadingModel:
		s.loadProgress = ssr.Progress
		return ssr.Status, nil
Jesse Gross's avatar
Jesse Gross committed
1223
	case ServerStatusLaunched, ServerStatusReady, ServerStatusNoSlotsAvailable:
1224
		return ssr.Status, nil
1225
	default:
1226
		return ssr.Status, fmt.Errorf("server error: %+v", ssr)
1227
1228
1229
	}
}

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
	var retries int
	for {
		status, err := s.getServerStatus(ctx)
		if err != nil {
			return status, err
		}

		if status == ServerStatusNoSlotsAvailable {
			if retries >= 10 {
				return status, fmt.Errorf("no slots available after %d retries", retries)
			}

			time.Sleep(5 * time.Millisecond)
			retries++
			continue
		}

		return status, nil
	}
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1253
func (s *llmServer) Ping(ctx context.Context) error {
1254
1255
1256
1257
1258
1259
1260
1261
	_, err := s.getServerStatus(ctx)
	if err != nil {
		slog.Debug("server unhealthy", "error", err)
		return err
	}
	return nil
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1262
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
1263
	stallDuration := envconfig.LoadTimeout()    // If no progress happens
1264
	stallTimer := time.Now().Add(stallDuration) // give up if we stall
1265
1266
1267

	slog.Info("waiting for llama runner to start responding")
	var lastStatus ServerStatus = -1
1268
	fullyLoaded := false
ManniX-ITA's avatar
ManniX-ITA committed
1269

1270
1271
	for {
		select {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1272
		case <-ctx.Done():
1273
			slog.Warn("client connection closed before server finished loading, aborting load")
1274
			return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
1275
		case err := <-s.done:
1276
			return fmt.Errorf("llama runner process has terminated: %w", err)
1277
1278
		default:
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1279
		if time.Now().After(stallTimer) {
ManniX-ITA's avatar
ManniX-ITA committed
1280
			// timeout
1281
1282
1283
1284
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1285
			return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
ManniX-ITA's avatar
ManniX-ITA committed
1286
1287
1288
1289
1290
		}
		if s.cmd.ProcessState != nil {
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1291
			}
ManniX-ITA's avatar
ManniX-ITA committed
1292
1293
			return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1294
1295
		ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
		defer cancel()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1296
		priorProgress := s.loadProgress
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1297
1298
1299
		status, _ := s.getServerStatus(ctx)
		if lastStatus != status && status != ServerStatusReady {
			// Only log on status changes
1300
			slog.Info("waiting for server to become available", "status", status)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1301
		}
ManniX-ITA's avatar
ManniX-ITA committed
1302
1303
		switch status {
		case ServerStatusReady:
Jesse Gross's avatar
Jesse Gross committed
1304
			slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", time.Since(s.loadStart).Seconds()))
ManniX-ITA's avatar
ManniX-ITA committed
1305
1306
			return nil
		default:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1307
			lastStatus = status
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1308
1309
1310
1311
			// Reset the timer as long as we're making forward progress on the load
			if priorProgress != s.loadProgress {
				slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
				stallTimer = time.Now().Add(stallDuration)
1312
			} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
1313
				slog.Debug("model load completed, waiting for server to become available", "status", status)
1314
				stallTimer = time.Now().Add(stallDuration)
1315
				fullyLoaded = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1316
			}
ManniX-ITA's avatar
ManniX-ITA committed
1317
1318
			time.Sleep(time.Millisecond * 250)
			continue
1319
1320
1321
1322
		}
	}
}

1323
1324
1325
1326
1327
1328
1329
func (s *llmServer) Pid() int {
	if s.cmd != nil && s.cmd.Process != nil {
		return s.cmd.Process.Pid
	}
	return -1
}

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
func (s *llmServer) GetPort() int {
	return s.port
}

func (s *llmServer) HasExited() bool {
	if s.cmd != nil && s.cmd.ProcessState != nil && s.cmd.ProcessState.ExitCode() >= 0 {
		return true
	}
	return false
}

1341
var grammarJSON = `
1342
1343
1344
1345
root   ::= object
value  ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
  "{" ws (
1346
         string ":" ws value
1347
    ("," ws string ":" ws value)*
1348
  )? ws "}" 
1349
1350
1351
1352
array  ::=
  "[" ws (
            value
    ("," ws value)*
1353
  )? ws "]" 
1354
1355
string ::=
  "\"" (
1356
    [^"\\\x7F\x00-\x1F] |
1357
    "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
1358
1359
  )* "\"" 
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? 
1360
1361
1362
1363
1364
1365
1366
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`

const maxBufferSize = 512 * format.KiloByte

type ImageData struct {
1367
1368
	Data []byte `json:"data"`
	ID   int    `json:"id"`
1369
1370
1371
1372
}

type CompletionRequest struct {
	Prompt  string
1373
	Format  json.RawMessage
1374
	Images  []ImageData
Michael Yang's avatar
Michael Yang committed
1375
	Options *api.Options
1376

1377
	Grammar string // set before sending the request to the subprocess
1378
1379
}

1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
// DoneReason represents the reason why a completion response is done
type DoneReason int

const (
	// DoneReasonStop indicates the completion stopped naturally
	DoneReasonStop DoneReason = iota
	// DoneReasonLength indicates the completion stopped due to length limits
	DoneReasonLength
	// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
	DoneReasonConnectionClosed
)

func (d DoneReason) String() string {
	switch d {
	case DoneReasonLength:
		return "length"
	case DoneReasonStop:
		return "stop"
	default:
		return "" // closed
	}
}

1403
type CompletionResponse struct {
1404
1405
1406
1407
1408
1409
1410
	Content            string        `json:"content"`
	DoneReason         DoneReason    `json:"done_reason"`
	Done               bool          `json:"done"`
	PromptEvalCount    int           `json:"prompt_eval_count"`
	PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
	EvalCount          int           `json:"eval_count"`
	EvalDuration       time.Duration `json:"eval_duration"`
1411
1412
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1413
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
1414
	slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
1415
	logutil.Trace("completion request", "prompt", req.Prompt)
1416

1417
	if len(req.Format) > 0 {
1418
1419
1420
1421
1422
1423
		switch string(req.Format) {
		case `null`, `""`:
			// Field was set, but "missing" a value. We accept
			// these as "not set".
			break
		case `"json"`:
1424
			req.Grammar = grammarJSON
1425
1426
1427
1428
		default:
			if req.Format[0] != '{' {
				return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
			}
1429

1430
1431
1432
1433
			// User provided a JSON schema
			g := llama.SchemaToGrammar(req.Format)
			if g == nil {
				return fmt.Errorf("invalid JSON schema in format")
1434
			}
1435
			req.Grammar = string(g)
1436
1437
1438
		}
	}

1439
1440
1441
1442
1443
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
	if err := s.sem.Acquire(ctx, 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
		return err
	}
	defer s.sem.Release(1)

	// put an upper limit on num_predict to avoid the model running on forever
	if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
		req.Options.NumPredict = 10 * s.options.NumCtx
	}

1459
	// Make sure the server is ready
1460
	status, err := s.getServerStatusRetry(ctx)
1461
1462
1463
	if err != nil {
		return err
	} else if status != ServerStatusReady {
1464
		return fmt.Errorf("unexpected server status: %s", status)
1465
1466
	}

1467
1468
1469
1470
	// Handling JSON marshaling with special characters unescaped.
	buffer := &bytes.Buffer{}
	enc := json.NewEncoder(buffer)
	enc.SetEscapeHTML(false)
1471

1472
	if err := enc.Encode(req); err != nil {
1473
1474
		return fmt.Errorf("failed to marshal data: %v", err)
	}
1475

1476
1477
1478
1479
1480
1481
	endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
	serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
	if err != nil {
		return fmt.Errorf("error creating POST request: %v", err)
	}
	serverReq.Header.Set("Content-Type", "application/json")
1482

1483
1484
	res, err := http.DefaultClient.Do(serverReq)
	if err != nil {
1485
1486
		slog.Error("post predict", "error", err)
		return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
1487
1488
	}
	defer res.Body.Close()
1489

1490
1491
	if res.StatusCode >= 400 {
		bodyBytes, err := io.ReadAll(res.Body)
1492
		if err != nil {
1493
			return fmt.Errorf("failed reading llm error response: %w", err)
1494
		}
1495
1496
1497
		log.Printf("llm predict error: %s", bodyBytes)
		return fmt.Errorf("%s", bodyBytes)
	}
1498

1499
1500
1501
	scanner := bufio.NewScanner(res.Body)
	buf := make([]byte, 0, maxBufferSize)
	scanner.Buffer(buf, maxBufferSize)
1502

1503
1504
1505
	// keep track of the last token generated, this is used to abort if the model starts looping
	var lastToken string
	var tokenRepeat int
1506

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
	for scanner.Scan() {
		select {
		case <-ctx.Done():
			// This handles the request cancellation
			return ctx.Err()
		default:
			line := scanner.Bytes()
			if len(line) == 0 {
				continue
			}
1517

1518
1519
			evt, ok := bytes.CutPrefix(line, []byte("data: "))
			if !ok {
1520
				evt = line
1521
			}
1522

1523
			var c CompletionResponse
1524
			if err := json.Unmarshal(evt, &c); err != nil {
1525
				return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
1526
1527
			}
			switch {
1528
			case strings.TrimSpace(c.Content) == lastToken:
1529
1530
1531
1532
1533
				tokenRepeat++
			default:
				lastToken = strings.TrimSpace(c.Content)
				tokenRepeat = 0
			}
1534

1535
1536
1537
1538
1539
			// 30 picked as an arbitrary max token repeat limit, modify as needed
			if tokenRepeat > 30 {
				slog.Debug("prediction aborted, token repeat limit reached")
				return ctx.Err()
			}
1540

1541
1542
1543
1544
			if c.Content != "" {
				fn(CompletionResponse{
					Content: c.Content,
				})
1545
			}
1546

1547
			if c.Done {
1548
				fn(c)
1549
				return nil
1550
			}
1551
		}
1552
	}
1553

1554
	if err := scanner.Err(); err != nil {
1555
		if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
1556
			s.Close()
1557
			var msg string
1558
1559
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1560
1561
			} else {
				msg = err.Error()
1562
			}
1563
			return fmt.Errorf("an error was encountered while running the model: %s", msg)
1564
1565
		}

1566
		return fmt.Errorf("error reading llm response: %v", err)
1567
1568
	}

1569
	return nil
1570
1571
}

1572
1573
type EmbeddingRequest struct {
	Content string `json:"content"`
1574
1575
}

1576
1577
type EmbeddingResponse struct {
	Embedding []float32 `json:"embedding"`
1578
1579
}

1580
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, error) {
1581
	logutil.Trace("embedding request", "input", input)
1582

1583
	if err := s.sem.Acquire(ctx, 1); err != nil {
1584
1585
1586
1587
1588
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1589
1590
		return nil, err
	}
1591
	defer s.sem.Release(1)
1592

1593
	// Make sure the server is ready
1594
	status, err := s.getServerStatusRetry(ctx)
1595
1596
1597
	if err != nil {
		return nil, err
	} else if status != ServerStatusReady {
1598
		return nil, fmt.Errorf("unexpected server status: %s", status)
1599
1600
	}

1601
	data, err := json.Marshal(EmbeddingRequest{Content: input})
Michael Yang's avatar
Michael Yang committed
1602
	if err != nil {
1603
1604
1605
		return nil, fmt.Errorf("error marshaling embed data: %w", err)
	}

1606
	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
1607
1608
1609
	if err != nil {
		return nil, fmt.Errorf("error creating embed request: %w", err)
	}
1610
	r.Header.Set("Content-Type", "application/json")
1611

1612
	resp, err := http.DefaultClient.Do(r)
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
	if err != nil {
		return nil, fmt.Errorf("do embedding request: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return nil, fmt.Errorf("error reading embed response: %w", err)
	}

	if resp.StatusCode >= 400 {
1624
		log.Printf("llm embedding error: %s", body)
1625
1626
1627
		return nil, fmt.Errorf("%s", body)
	}

1628
	var e EmbeddingResponse
1629
	if err := json.Unmarshal(body, &e); err != nil {
1630
1631
1632
		return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
	}

1633
	return e.Embedding, nil
1634
1635
}

Michael Yang's avatar
Michael Yang committed
1636
1637
1638
1639
1640
1641
1642
1643
type TokenizeRequest struct {
	Content string `json:"content"`
}

type TokenizeResponse struct {
	Tokens []int `json:"tokens"`
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1644
func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error) {
1645
1646
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()
1647

1648
1649
	if s.llamaModel != nil {
		return s.llamaModel.Tokenize(content, false, true)
Michael Yang's avatar
Michael Yang committed
1650
	}
1651
	if s.textProcessor != nil {
1652
		tokens, err := s.textProcessor.Encode(content, false)
1653
1654
		if err != nil {
			return nil, err
1655
		}
1656
1657
1658
1659
1660
		toks := make([]int, len(tokens))
		for i, t := range tokens {
			toks[i] = int(t)
		}
		return toks, nil
Michael Yang's avatar
Michael Yang committed
1661
	}
1662
1663
	// not reached
	return nil, fmt.Errorf("no tokenizer configured")
Michael Yang's avatar
Michael Yang committed
1664
1665
1666
1667
1668
1669
1670
1671
}

type DetokenizeRequest struct {
	Tokens []int `json:"tokens"`
}

type DetokenizeResponse struct {
	Content string `json:"content"`
1672
1673
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1674
func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
1675
1676
1677
1678
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()

	if s.llamaModel != nil {
1679
1680
		var resp string
		for _, token := range tokens {
1681
			resp += s.llamaModel.TokenToPiece(token)
1682
1683
1684
		}
		return resp, nil
	}
1685
1686
1687
1688
	if s.textProcessor != nil {
		toks := make([]int32, len(tokens))
		for i, t := range tokens {
			toks[i] = int32(t)
1689
		}
1690
1691
1692
		content, err := s.textProcessor.Decode(toks)
		if err != nil {
			return "", err
1693
		}
1694
		return content, nil
Michael Yang's avatar
Michael Yang committed
1695
	}
1696
1697
	// not reached
	return "", fmt.Errorf("no tokenizer configured")
1698
1699
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1700
func (s *llmServer) Close() error {
1701
1702
1703
1704
	s.llamaModelLock.Lock()
	if s.llamaModel != nil {
		llama.FreeModel(s.llamaModel)
		s.llamaModel = nil
1705
	}
1706
	s.llamaModelLock.Unlock()
1707

1708
	if s.cmd != nil {
1709
		slog.Debug("stopping llama server", "pid", s.Pid())
1710
1711
1712
		if err := s.cmd.Process.Kill(); err != nil {
			return err
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1713
1714
		// if ProcessState is already populated, Wait already completed, no need to wait again
		if s.cmd.ProcessState == nil {
1715
			slog.Debug("waiting for llama server to exit", "pid", s.Pid())
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1716
1717
			<-s.done
		}
1718

1719
		slog.Debug("llama server stopped", "pid", s.Pid())
1720
1721
1722
1723
1724
	}

	return nil
}

Jesse Gross's avatar
Jesse Gross committed
1725
func (s *llamaServer) VRAMSize() uint64 {
1726
	return s.estimate.VRAMSize
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1727
1728
}

Jesse Gross's avatar
Jesse Gross committed
1729
func (s *llamaServer) TotalSize() uint64 {
1730
	return s.estimate.TotalSize
1731
1732
}

1733
func (s *llamaServer) VRAMByGPU(id ml.DeviceID) uint64 {
1734
	for i, gpu := range s.gpus {
1735
		if gpu.DeviceID == id {
1736
1737
1738
			if i < len(s.estimate.GPUSizes) {
				return s.estimate.GPUSizes[i]
			}
1739
1740
1741
1742
		}
	}
	return 0
}
Jesse Gross's avatar
Jesse Gross committed
1743

1744
1745
1746
1747
1748
func (s *llamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
	slog.Debug("llamarunner free vram reporting not supported")
	return nil
}

Jesse Gross's avatar
Jesse Gross committed
1749
1750
1751
1752
1753
1754
1755
1756
func (s *ollamaServer) VRAMSize() uint64 {
	if s.mem == nil {
		return 0
	}

	var mem uint64

	for _, g := range s.mem.GPUs {
1757
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1758
1759
1760
1761
1762
1763
	}

	// Some elements are always on CPU. However, if we have allocated all layers
	// on the GPU then include the CPU components as well, to represent complete offloading.
	noCPULayers := true
	for i := range s.mem.CPU.Weights {
1764
		if s.mem.CPU.Weights[i] != 0 || s.mem.CPU.Cache[i] != 0 {
Jesse Gross's avatar
Jesse Gross committed
1765
1766
1767
1768
1769
			noCPULayers = false
			break
		}
	}
	if noCPULayers {
1770
1771
		mem += s.mem.InputWeights
		mem += s.mem.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
	}

	return mem
}

func (s *ollamaServer) TotalSize() uint64 {
	if s.mem == nil {
		return 0
	}

1782
1783
	mem := s.mem.InputWeights
	mem += s.mem.CPU.Size()
Jesse Gross's avatar
Jesse Gross committed
1784
	for _, g := range s.mem.GPUs {
1785
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1786
1787
1788
1789
1790
	}

	return mem
}

1791
func (s *ollamaServer) VRAMByGPU(id ml.DeviceID) uint64 {
Jesse Gross's avatar
Jesse Gross committed
1792
1793
1794
1795
1796
	if s.mem == nil {
		return 0
	}

	for _, g := range s.mem.GPUs {
1797
		if g.DeviceID == id {
1798
			return g.Size()
Jesse Gross's avatar
Jesse Gross committed
1799
1800
1801
1802
1803
		}
	}

	return 0
}
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815

func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
	devices, err := discover.GetDevicesFromRunner(ctx, s)
	if err != nil {
		if s.cmd != nil && s.cmd.ProcessState == nil {
			// Still running but hit an error, log
			slog.Debug("failure refreshing GPU information", "error", err)
		}
		// else no longer running so suppress logging as a failure is expected
	}
	return devices
}