ggml-mpi.c 7.95 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
//go:build mpi

/**
4
 * llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
Michael Yang's avatar
Michael Yang committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
 *
 * MIT License
 *
 * Copyright (c) 2023 Georgi Gerganov
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "ggml-mpi.h"

#include "ggml.h"

#include <mpi.h>

#include <stdio.h>
#include <stdlib.h>

#define MIN(a, b) ((a) < (b) ? (a) : (b))

#define UNUSED GGML_UNUSED

struct ggml_mpi_context {
    int rank;
    int size;
};

void ggml_mpi_backend_init(void) {
    MPI_Init(NULL, NULL);
}

void ggml_mpi_backend_free(void) {
    MPI_Finalize();
}

struct ggml_mpi_context * ggml_mpi_init(void) {
    struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));

    MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
    MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);

    return ctx;
}

void ggml_mpi_free(struct ggml_mpi_context * ctx) {
    free(ctx);
}

int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
    return ctx->rank;
}

void ggml_mpi_eval_init(
        struct ggml_mpi_context * ctx_mpi,
                            int * n_tokens,
                            int * n_past,
                            int * n_threads) {
    UNUSED(ctx_mpi);

    // synchronize the worker node parameters with the root node
    MPI_Barrier(MPI_COMM_WORLD);

    MPI_Bcast(n_tokens,  1, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(n_past,    1, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
}

static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
    struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
    if (t == NULL) {
        fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
        return -1;
    }

    for (int i = 0; i < gf->n_nodes; i++) {
        if (gf->nodes[i] == t) {
            return i;
        }
    }

    fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
    return -1;
}

static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
    MPI_Datatype mpi_type;

    switch (t->type) {
        case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
        case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
        default: GGML_ASSERT(false && "not implemented");
    }

    const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
    GGML_ASSERT(retval == MPI_SUCCESS);
}

static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
    MPI_Datatype mpi_type;

    switch (t->type) {
        case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
        case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
        default: GGML_ASSERT(false && "not implemented");
    }

    MPI_Status status; UNUSED(status);

    const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
    GGML_ASSERT(retval == MPI_SUCCESS);
}

// TODO: there are many improvements that can be done to this implementation
void ggml_mpi_graph_compute_pre(
        struct ggml_mpi_context * ctx_mpi,
             struct ggml_cgraph * gf,
                            int   n_layers) {
    const int mpi_rank = ctx_mpi->rank;
    const int mpi_size = ctx_mpi->size;

    struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
    if (inp_tokens == NULL) {
        fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
        return;
    }

    struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
    if (inp0 == NULL) {
        fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
        return;
    }

    GGML_ASSERT(inp0 == gf->nodes[0]);

    // distribute the compute graph into slices across the MPI nodes
    //
    // the main node (0) processes the last layers + the remainder of the compute graph
    // and is responsible to pass the input tokens to the first node (1)
    //
    // node 1:   [(  0) * n_per_node, (  1) * n_per_node)
    // node 2:   [(  1) * n_per_node, (  2) * n_per_node)
    // ...
    // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
    // node 0:   [(n-1) * n_per_node,            n_nodes)
    //
    if (mpi_rank > 0) {
        if (mpi_rank == 1) {
            // the first node (1) receives the input tokens from the main node (0)
            ggml_mpi_tensor_recv(inp_tokens, 0);
        } else {
            // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
            ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
        }
    } else if (mpi_size > 1) {
        // node 0 sends the input tokens to node 1
        ggml_mpi_tensor_send(inp_tokens, 1);

        // recv the output data from the last node
        ggml_mpi_tensor_recv(inp0, mpi_size - 1);
    }

    {
        const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;

        const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;

        const int il0 =               (mpi_idx + 0) * n_per_node;
        const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);

        char name_l0[GGML_MAX_NAME];
        char name_l1[GGML_MAX_NAME];

        snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
        snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);

        const int idx_l0 =                ggml_graph_get_node_idx(gf, name_l0);
        const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;

        if (idx_l0 < 0 || idx_l1 < 0) {
            fprintf(stderr, "%s: layer input nodes not found\n", __func__);
            return;
        }

        // attach the input data to all nodes that need it
        // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
        for (int i = idx_l0; i < idx_l1; i++) {
            if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
                gf->nodes[i]->src[0] =  inp0;
            }
            if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
                gf->nodes[i]->src[1] =  inp0;
            }
        }

        // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
        for (int i = 1; i < idx_l1 - idx_l0; i++) {
            gf->nodes[i] = gf->nodes[idx_l0 + i];
            gf->grads[i] = gf->grads[idx_l0 + i];
        }

        // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
        if (mpi_idx != 0) {
            gf->nodes[0]->op = GGML_OP_NONE;
        }

        gf->n_nodes = idx_l1 - idx_l0;

        //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
    }
}

void ggml_mpi_graph_compute_post(
        struct ggml_mpi_context * ctx_mpi,
             struct ggml_cgraph * gf,
                            int   n_layers) {
    UNUSED(n_layers);

    const int mpi_rank = ctx_mpi->rank;
    const int mpi_size = ctx_mpi->size;

    // send the output data to the next node
    if (mpi_rank > 0) {
        ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
    }
}