ggml-cuda.cu 238 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
/**
2
 * llama.cpp - git f64d44a9b9581cd58f7ec40f4fa1c3ca5ca18e1e
Michael Yang's avatar
Michael Yang committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 *
 * MIT License
 *
 * Copyright (c) 2023 Georgi Gerganov
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <cstddef>
#include <cstdint>
#include <limits>
#include <stdint.h>
#include <stdio.h>
#include <atomic>
#include <assert.h>

#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>

#include "ggml-cuda.h"
#include "ggml.h"

42
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
43
#define CC_TURING   700
44

Michael Yang's avatar
Michael Yang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");

#define CUDA_CHECK(err)                                                                 \
    do {                                                                                \
        cudaError_t err_ = (err);                                                       \
        if (err_ != cudaSuccess) {                                                      \
            fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
                cudaGetErrorString(err_));                                              \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)

#if CUDART_VERSION >= 12000
#define CUBLAS_CHECK(err)                                                               \
    do {                                                                                \
        cublasStatus_t err_ = (err);                                                    \
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
            fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n",                         \
                    err_, __FILE__, __LINE__, cublasGetStatusString(err_));             \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)
#else
#define CUBLAS_CHECK(err)                                                               \
    do {                                                                                \
        cublasStatus_t err_ = (err);                                                    \
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
            fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);  \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)
#endif // CUDART_VERSION >= 11

Michael Yang's avatar
Michael Yang committed
82
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
83
84
85
86
87
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
Michael Yang's avatar
Michael Yang committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#endif //GGML_CUDA_F16

static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
    const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment

    int x32 = 0;
    x32 |= x16[0] <<  0;
    x32 |= x16[1] << 16;

    return x32;
}

static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
    const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment

    int x32 = 0;
    x32 |= x16[0] <<  0;
    x32 |= x16[1] << 16;

    return x32;
}

static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
    return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}

static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
    return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
}
Michael Yang's avatar
Michael Yang committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
typedef void (*ggml_cuda_op_t)(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
    float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main);

// QK = number of values after dequantization
// QR = QK / number of values before dequantization
// QI = number of 32 bit integers before dequantization

#define QK4_0 32
#define QR4_0 2
134
#define QI4_0 (QK4_0 / (4 * QR4_0))
Michael Yang's avatar
Michael Yang committed
135
136
137
138
139
140
141
142
typedef struct {
    half    d;              // delta
    uint8_t qs[QK4_0 / 2];  // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");

#define QK4_1 32
#define QR4_1 2
143
#define QI4_1 (QK4_1 / (4 * QR4_1))
Michael Yang's avatar
Michael Yang committed
144
typedef struct {
Michael Yang's avatar
Michael Yang committed
145
    half2   dm;             // dm.x = delta, dm.y = min
Michael Yang's avatar
Michael Yang committed
146
147
148
149
150
151
    uint8_t qs[QK4_1 / 2];  // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");

#define QK5_0 32
#define QR5_0 2
152
#define QI5_0 (QK5_0 / (4 * QR5_0))
Michael Yang's avatar
Michael Yang committed
153
154
155
156
157
158
159
160
161
typedef struct {
    half d;                 // delta
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_0 / 2];  // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");

#define QK5_1 32
#define QR5_1 2
162
#define QI5_1 (QK5_1 / (4 * QR5_1))
Michael Yang's avatar
Michael Yang committed
163
typedef struct {
Michael Yang's avatar
Michael Yang committed
164
    half2 dm;               // dm.x = delta, dm.y = min
Michael Yang's avatar
Michael Yang committed
165
166
167
168
169
170
171
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_1 / 2];  // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");

#define QK8_0 32
#define QR8_0 1
172
#define QI8_0 (QK8_0 / (4 * QR8_0))
Michael Yang's avatar
Michael Yang committed
173
174
175
176
177
178
179
180
typedef struct {
    half    d;              // delta
    int8_t  qs[QK8_0];      // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");

#define QK8_1 32
#define QR8_1 1
181
#define QI8_1 (QK8_1 / (4 * QR8_1))
Michael Yang's avatar
Michael Yang committed
182
typedef struct {
Michael Yang's avatar
Michael Yang committed
183
    half2   ds;             // ds.x = delta, ds.y = sum
Michael Yang's avatar
Michael Yang committed
184
185
186
187
    int8_t  qs[QK8_0];      // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");

Michael Yang's avatar
Michael Yang committed
188
189
190
191
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
typedef void (*load_tiles_cuda_t)(
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
192
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
Michael Yang's avatar
Michael Yang committed
193
194
195
typedef float (*vec_dot_q_mul_mat_cuda_t)(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
Michael Yang's avatar
Michael Yang committed
196
197
198
199
200
201
202
203
204
205
206

//================================= k-quants

#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif

207
208
#define QR2_K 4
#define QI2_K (QK_K / (4*QR2_K))
Michael Yang's avatar
Michael Yang committed
209
210
211
typedef struct {
    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
    uint8_t qs[QK_K/4];      // quants
Michael Yang's avatar
Michael Yang committed
212
    half2 dm;                // super-block scale for quantized scales/mins
Michael Yang's avatar
Michael Yang committed
213
214
215
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");

216
217
#define QR3_K 4
#define QI3_K (QK_K / (4*QR3_K))
Michael Yang's avatar
Michael Yang committed
218
219
220
221
222
223
224
225
226
227
228
229
typedef struct {
    uint8_t hmask[QK_K/8];     // quants - high bit
    uint8_t qs[QK_K/4];        // quants - low 2 bits
#ifdef GGML_QKK_64
    uint8_t scales[2]; // scales, quantized with 8 bits
#else
    uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
#endif
    half d;             // super-block scale
} block_q3_K;
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");

230
231
#define QR4_K 2
#define QI4_K (QK_K / (4*QR4_K))
Michael Yang's avatar
Michael Yang committed
232
233
234
235
236
237
238
239
240
#ifdef GGML_QKK_64
typedef struct {
    half    d[2];              // super-block scales/mins
    uint8_t scales[2];         // 4-bit block scales/mins
    uint8_t qs[QK_K/2];        // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
Michael Yang's avatar
Michael Yang committed
241
    half2 dm;                  // super-block scale for quantized scales/mins
Michael Yang's avatar
Michael Yang committed
242
243
244
245
246
247
    uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
    uint8_t qs[QK_K/2];        // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
#endif

248
249
#define QR5_K 2
#define QI5_K (QK_K / (4*QR5_K))
Michael Yang's avatar
Michael Yang committed
250
251
252
253
254
255
256
257
258
259
#ifdef GGML_QKK_64
typedef struct {
    half d;                  // super-block scale
    int8_t scales[QK_K/16];  // block scales
    uint8_t qh[QK_K/8];      // quants, high bit
    uint8_t qs[QK_K/2];      // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
Michael Yang's avatar
Michael Yang committed
260
261
262
263
    half2 dm;                     // super-block scale for quantized scales/mins
    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
    uint8_t qh[QK_K/8];           // quants, high bit
    uint8_t qs[QK_K/2];           // quants, low 4 bits
Michael Yang's avatar
Michael Yang committed
264
265
266
267
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif

268
269
#define QR6_K 2
#define QI6_K (QK_K / (4*QR6_K))
Michael Yang's avatar
Michael Yang committed
270
271
272
273
274
275
276
277
278
typedef struct {
    uint8_t ql[QK_K/2];   // quants, lower 4 bits
    uint8_t qh[QK_K/4];   // quants, upper 2 bits
    int8_t  scales[QK_K/16]; // scales
    half    d;         // delta
} block_q6_K;
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");

#define WARP_SIZE 32
Michael Yang's avatar
Michael Yang committed
279
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
Michael Yang's avatar
Michael Yang committed
280
281
282

#define CUDA_ADD_BLOCK_SIZE 256
#define CUDA_MUL_BLOCK_SIZE 256
283
#define CUDA_GELU_BLOCK_SIZE 256
Michael Yang's avatar
Michael Yang committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
#define CUDA_ROPE_BLOCK_SIZE 256
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
#define CUDA_QUANTIZE_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256

// dmmv = dequantize_mul_mat_vec
#ifndef GGML_CUDA_DMMV_X
#define GGML_CUDA_DMMV_X 32
#endif
#ifndef GGML_CUDA_MMV_Y
#define GGML_CUDA_MMV_Y 1
#endif

#ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 2
#else
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
#endif

struct ggml_tensor_extra_gpu {
    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
    cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
};

311
312
313
314
315
316
317
318
319
320
321
322
323
324
static int g_device_count = -1;
static int g_main_device = 0;
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
static bool g_mul_mat_q = false;

static void * g_scratch_buffer = nullptr;
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
static size_t g_scratch_offset = 0;

static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};

static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };

325
static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
Michael Yang's avatar
Michael Yang committed
326
327
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

328
    if (i >= kx) {
Michael Yang's avatar
Michael Yang committed
329
330
        return;
    }
331
    dst[i] = x[i] + y[i%ky];
Michael Yang's avatar
Michael Yang committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
}

static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = __hadd(x[i], __float2half(y[i]));
}

static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= kx) {
        return;
    }
    dst[i] = x[i] * y[i%ky];
}

352
353
354
355
356
357
358
359
360
361
362
363
364
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
    const float GELU_COEF_A    = 0.044715f;
    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    float xi = x[i];
    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
}

Michael Yang's avatar
Michael Yang committed
365
366
367
368
369
370
371
372
373
static __global__ void silu_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] / (1.0f + expf(-x[i]));
}

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;

    const float eps = 1e-5f;

    float mean = 0.0f;
    float var = 0.0f;

    for (int col = tid; col < ncols; col += WARP_SIZE) {
        const float xi = x[row*ncols + col];
        mean += xi;
        var += xi * xi;
    }

    // sum up partial sums
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
        var += __shfl_xor_sync(0xffffffff, var, mask, 32);
    }

    mean /= ncols;
    var = var / ncols - mean * mean;
    const float inv_var = rsqrtf(var + eps);

    for (int col = tid; col < ncols; col += WARP_SIZE) {
        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
    }
}

Michael Yang's avatar
Michael Yang committed
405
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
Michael Yang's avatar
Michael Yang committed
406
407
408
409
410
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;

    float tmp = 0.0f; // partial sum for thread in warp

411
    for (int col = tid; col < ncols; col += WARP_SIZE) {
Michael Yang's avatar
Michael Yang committed
412
413
414
415
416
417
418
419
420
421
422
        const float xi = x[row*ncols + col];
        tmp += xi * xi;
    }

    // sum up partial sums
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    const float mean = tmp / ncols;
423
    const float scale = rsqrtf(mean + eps);
Michael Yang's avatar
Michael Yang committed
424

425
    for (int col = tid; col < ncols; col += WARP_SIZE) {
Michael Yang's avatar
Michael Yang committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        dst[row*ncols + col] = scale * x[row*ncols + col];
    }
}

static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q4_0 * x = (const block_q4_0 *) vx;

    const dfloat d = x[ib].d;

    const int vui = x[ib].qs[iqs];

    v.x = vui & 0xF;
    v.y = vui >> 4;

Michael Yang's avatar
Michael Yang committed
440
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
441
442
443
444
445
    v = __hsub2(v, {8.0f, 8.0f});
    v = __hmul2(v, {d, d});
#else
    v.x = (v.x - 8.0f) * d;
    v.y = (v.y - 8.0f) * d;
Michael Yang's avatar
Michael Yang committed
446
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
447
448
449
450
451
}

static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q4_1 * x = (const block_q4_1 *) vx;

Michael Yang's avatar
Michael Yang committed
452
453
    const dfloat d = x[ib].dm.x;
    const dfloat m = x[ib].dm.y;
Michael Yang's avatar
Michael Yang committed
454
455
456
457
458
459

    const int vui = x[ib].qs[iqs];

    v.x = vui & 0xF;
    v.y = vui >> 4;

Michael Yang's avatar
Michael Yang committed
460
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
461
462
463
464
465
    v = __hmul2(v, {d, d});
    v = __hadd2(v, {m, m});
#else
    v.x = (v.x * d) + m;
    v.y = (v.y * d) + m;
Michael Yang's avatar
Michael Yang committed
466
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
}

static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q5_0 * x = (const block_q5_0 *) vx;

    const dfloat d = x[ib].d;

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);

Michael Yang's avatar
Michael Yang committed
483
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
484
485
486
487
488
    v = __hsub2(v, {16.0f, 16.0f});
    v = __hmul2(v, {d, d});
#else
    v.x = (v.x - 16.0f) * d;
    v.y = (v.y - 16.0f) * d;
Michael Yang's avatar
Michael Yang committed
489
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
490
491
492
493
494
}

static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q5_1 * x = (const block_q5_1 *) vx;

Michael Yang's avatar
Michael Yang committed
495
496
    const dfloat d = x[ib].dm.x;
    const dfloat m = x[ib].dm.y;
Michael Yang's avatar
Michael Yang committed
497
498
499
500
501
502
503
504
505
506

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);

Michael Yang's avatar
Michael Yang committed
507
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
508
509
510
511
512
    v = __hmul2(v, {d, d});
    v = __hadd2(v, {m, m});
#else
    v.x = (v.x * d) + m;
    v.y = (v.y * d) + m;
Michael Yang's avatar
Michael Yang committed
513
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
514
515
516
517
518
519
520
521
522
523
}

static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const block_q8_0 * x = (const block_q8_0 *) vx;

    const dfloat d = x[ib].d;

    v.x = x[ib].qs[iqs + 0];
    v.y = x[ib].qs[iqs + 1];

Michael Yang's avatar
Michael Yang committed
524
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
525
526
527
528
    v = __hmul2(v, {d, d});
#else
    v.x *= d;
    v.y *= d;
Michael Yang's avatar
Michael Yang committed
529
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
}

//================================== k-quants

static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {

    const int i   = blockIdx.x;
    const block_q2_K * x = (const block_q2_K *) vx;

    const int tid = threadIdx.x;
#if QK_K == 256
    const int n   = tid/32;
    const int l   = tid - 32*n;
    const int is  = 8*n + l/16;

    const uint8_t q = x[i].qs[32*n + l];
    float * y = yy + i*QK_K + 128*n;

Michael Yang's avatar
Michael Yang committed
548
549
    float dall = x[i].dm.x;
    float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
550
551
552
553
554
555
556
557
558
    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
    const int is = tid/16;  // 0 or 1
    const int il = tid%16;  // 0...15
    const uint8_t q = x[i].qs[il] >> (2*is);
    float * y = yy + i*QK_K + 16*is + il;
Michael Yang's avatar
Michael Yang committed
559
560
    float dall = x[i].dm.x;
    float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif

}

static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {

    const int i = blockIdx.x;
    const block_q3_K * x = (const block_q3_K *) vx;

#if QK_K == 256
    const int r = threadIdx.x/4;
    const int tid = r/2;
    const int is0 = r%2;
    const int l0 = 16*is0 + 4*(threadIdx.x%4);
    const int n = tid / 4;
    const int j = tid - 4*n;

    uint8_t m = 1 << (4*n + j);
    int is = 8*n + 2*j + is0;
    int shift = 2*j;

    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
    float d_all = x[i].d;
    float dl = d_all * (us - 32);

    float * y = yy + i*QK_K + 128*n + 32*j;
    const uint8_t * q = x[i].qs + 32*n;
    const uint8_t * hm = x[i].hmask;

    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
    const int tid = threadIdx.x;
    const int is  = tid/16;  // 0 or 1
    const int il  = tid%16;  // 0...15
    const int im  = il/8;    // 0...1
    const int in  = il%8;    // 0...7

    float * y = yy + i*QK_K + 16*is + il;

    const uint8_t q = x[i].qs[il] >> (2*is);
    const uint8_t h = x[i].hmask[in] >> (2*is + im);
    const float   d = (float)x[i].d;

    if (is == 0) {
        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
    } else {
        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
    }
#endif

}

#if QK_K == 256
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
    if (j < 4) {
        d = q[j] & 63; m = q[j + 4] & 63;
    } else {
        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
    }
}
#endif

static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q4_K * x = (const block_q4_K *) vx;

    const int i = blockIdx.x;

#if QK_K == 256
    // assume 32 threads
    const int tid = threadIdx.x;
    const int il  = tid/8;
    const int ir  = tid%8;
    const int is  = 2*il;
    const int n   = 4;

    float * y = yy + i*QK_K + 64*il + n*ir;

Michael Yang's avatar
Michael Yang committed
646
647
    const float dall = x[i].dm.x;
    const float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

    const uint8_t * q = x[i].qs + 32*il + n*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;
    for (int l = 0; l < n; ++l) {
        y[l + 0] = d1 * (q[l] & 0xF) - m1;
        y[l +32] = d2 * (q[l] >>  4) - m2;
    }
#else
    const int tid = threadIdx.x;
    const uint8_t * q = x[i].qs;
    float * y = yy + i*QK_K;
    const float d = (float)x[i].d[0];
    const float m = (float)x[i].d[1];
    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
#endif
}

static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q5_K * x = (const block_q5_K *) vx;

    const int i = blockIdx.x;

#if QK_K == 256
    // assume 64 threads - this is very slightly better than the one below
    const int tid = threadIdx.x;
    const int il  = tid/16;   // il is in 0...3
    const int ir  = tid%16;   // ir is in 0...15
    const int is  = 2*il;     // is is in 0...6

    float * y = yy + i*QK_K + 64*il + 2*ir;

Michael Yang's avatar
Michael Yang committed
685
686
    const float dall = x[i].dm.x;
    const float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
    const uint8_t * qh = x[i].qh + 2*ir;

    uint8_t sc, m;
    get_scale_min_k4(is + 0, x[i].scales, sc, m);
    const float d1 = dall * sc; const float m1 = dmin * m;
    get_scale_min_k4(is + 1, x[i].scales, sc, m);
    const float d2 = dall * sc; const float m2 = dmin * m;

    uint8_t   hm  = 1 << (2*il);
    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
    hm <<= 1;
    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
    const int tid = threadIdx.x;
    const uint8_t q = x[i].qs[tid];
    const int im = tid/8;  // 0...3
    const int in = tid%8;  // 0...7
    const int is = tid/16; // 0 or 1
    const uint8_t h = x[i].qh[in] >> im;
    const float d = x[i].d;
    float * y = yy + i*QK_K + tid;
    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}

static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
    const block_q6_K * x = (const block_q6_K *) vx;

    const int i = blockIdx.x;
#if QK_K == 256

    // assume 64 threads - this is very slightly better than the one below
    const int tid = threadIdx.x;
    const int ip  = tid/32;   // ip is 0 or 1
    const int il  = tid - 32*ip; // 0...32
    const int is  = 8*ip + il/16;

    float * y = yy + i*QK_K + 128*ip + il;

    const float d = x[i].d;

    const uint8_t * ql = x[i].ql + 64*ip + il;
    const uint8_t   qh = x[i].qh[32*ip + il];
    const int8_t  * sc = x[i].scales + is;

    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else

    // assume 32 threads
    const int tid = threadIdx.x;
    const int ip  = tid/16;         // 0 or 1
    const int il  = tid - 16*ip;    // 0...15

    float * y = yy + i*QK_K + 16*ip + il;

    const float d = x[i].d;

    const uint8_t   ql = x[i].ql[16*ip + il];
    const uint8_t   qh = x[i].qh[il] >> (2*ip);
    const int8_t  * sc = x[i].scales;

    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
#endif
}

static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q2_K * x = (const block_q2_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256
    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int step = 16/K_QUANTS_PER_ITERATION;

    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0...15 or 0...7

    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
    const int q_offset = 32*im + l0;
    const int s_offset = 8*im;
    const int y_offset = 128*im + l0;

    uint32_t aux[4];
    const uint8_t * d = (const uint8_t *)aux;
    const uint8_t * m = (const uint8_t *)(aux + 2);

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + y_offset;
        const uint8_t * q = x[i].qs + q_offset;

Michael Yang's avatar
Michael Yang committed
798
799
        const float dall = x[i].dm.x;
        const float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
        aux[0] = a[0] & 0x0f0f0f0f;
        aux[1] = a[1] & 0x0f0f0f0f;
        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;

        float sum1 = 0, sum2 = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];

        }
        tmp += dall * sum1 - dmin * sum2;

    }
#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
    const int offset = tid * K_QUANTS_PER_ITERATION;

    uint32_t uaux[2];
    const uint8_t * d = (const uint8_t *)uaux;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + offset;
        const uint8_t * q = x[i].qs + offset;
        const uint32_t * s = (const uint32_t *)x[i].scales;

        uaux[0] = s[0] & 0x0f0f0f0f;
        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;

Michael Yang's avatar
Michael Yang committed
841
        const float2 dall = __half22float2(x[i].dm);
Michael Yang's avatar
Michael Yang committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

        float sum1 = 0, sum2 = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            const uint8_t ql = q[l];
            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
                  + y[l+16] * d[1] * ((ql >> 2) & 3)
                  + y[l+32] * d[2] * ((ql >> 4) & 3)
                  + y[l+48] * d[3] * ((ql >> 6) & 3);
            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
        }
        tmp += dall.x * sum1 - dall.y * sum2;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q3_K * x = (const block_q3_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256

    const uint16_t kmask1 = 0x0303;
    const uint16_t kmask2 = 0x0f0f;

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
    const int step = 16/K_QUANTS_PER_ITERATION;
    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0....15 or 0...7

    const uint8_t m = 1 << (4*im);

    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
    const int q_offset =  32*im + l0;
    const int y_offset = 128*im + l0;

    uint16_t utmp[4];
    const int8_t * s = (const int8_t *)utmp;

    const uint16_t s_shift = 4*im;

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + y_offset;
        const uint8_t * q = x[i].qs + q_offset;
        const uint8_t * h = x[i].hmask + l0;

        const uint16_t * a = (const uint16_t *)x[i].scales;
        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);

        const float d = x[i].d;

        float sum = 0;
        for (int l = 0; l < n; ++l) {
            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
        }
        tmp += d * sum;

    }
#else

    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
    const int in = offset/8;                                 // 0 or 1
    const int im = offset%8;                                 // 0...7

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y = yy + i * QK_K + offset;
        const uint8_t * q = x[i].qs + offset;
        const uint8_t * s = x[i].scales;

        const float dall = (float)x[i].d;

        float sum = 0;
        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
            const uint8_t hl = x[i].hmask[im+l] >> in;
            const uint8_t ql = q[l];
            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
        }
        tmp += sum;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;
    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q4_K * x = (const block_q4_K *)vx + ib0;

#if QK_K == 256
    const uint16_t kmask1 = 0x3f3f;
    const uint16_t kmask2 = 0x0f0f;
    const uint16_t kmask3 = 0xc0c0;

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1

    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4

    const int il  = tid/step;                            // 0...3
    const int ir  = tid - step*il;                       // 0...7 or 0...3
    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4

    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
    const int in = il%2;

    const int l0 = n*(2*ir + in);
    const int q_offset = 32*im + l0;
    const int y_offset = 64*im + l0;

    uint16_t aux[4];
    const uint8_t * sc = (const uint8_t *)aux;

Michael Yang's avatar
Michael Yang committed
1004
1005
1006
1007
1008
1009
1010
1011
#if K_QUANTS_PER_ITERATION == 2
    uint32_t q32[4];
    const uint8_t * q4 = (const uint8_t *)q32;
#else
    uint16_t q16[4];
    const uint8_t * q4 = (const uint8_t *)q16;
#endif

Michael Yang's avatar
Michael Yang committed
1012
1013
1014
1015
1016
1017
1018
    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y1 = yy + i*QK_K + y_offset;
        const float   * y2 = y1 + 128;

Michael Yang's avatar
Michael Yang committed
1019
1020
        const float dall = x[i].dm.x;
        const float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
1021
1022
1023
1024
1025
1026
1027

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux[0] = a[im+0] & kmask1;
        aux[1] = a[im+2] & kmask1;
        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);

Michael Yang's avatar
Michael Yang committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
#if K_QUANTS_PER_ITERATION == 2
        const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
        const uint32_t * q2 = q1 + 16;

        q32[0] = q1[0] & 0x0f0f0f0f;
        q32[1] = q1[0] & 0xf0f0f0f0;
        q32[2] = q2[0] & 0x0f0f0f0f;
        q32[3] = q2[0] & 0xf0f0f0f0;

Michael Yang's avatar
Michael Yang committed
1037
1038
        float4 s = {0.f, 0.f, 0.f, 0.f};
        float smin = 0;
Michael Yang's avatar
Michael Yang committed
1039
1040
1041
        for (int l = 0; l < 4; ++l) {
            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
            s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
Michael Yang's avatar
Michael Yang committed
1042
1043
            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
        }
Michael Yang's avatar
Michael Yang committed
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
        const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
        const uint16_t * q2 = q1 + 32;

        q16[0] = q1[0] & 0x0f0f;
        q16[1] = q1[0] & 0xf0f0;
        q16[2] = q2[0] & 0x0f0f;
        q16[3] = q2[0] & 0xf0f0;

        float4 s = {0.f, 0.f, 0.f, 0.f};
        float smin = 0;
        for (int l = 0; l < 2; ++l) {
            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
            s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
        }
        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#endif
Michael Yang's avatar
Michael Yang committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

    }
#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);

    const int step = tid * K_QUANTS_PER_ITERATION;

    uint16_t aux16[2];
    const uint8_t * s = (const uint8_t *)aux16;

    float tmp = 0;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
        const uint8_t * q = x[i].qs + step;
        const float   * y = yy + i*QK_K + step;
        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux16[0] = a[0] & 0x0f0f;
        aux16[1] = (a[0] >> 4) & 0x0f0f;
        const float d = (float)x[i].d[0];
        const float m = (float)x[i].d[1];
        float sum = 0.f;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
        }
        tmp += sum;
    }

#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {

    const int row = blockIdx.x;
    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q5_K * x = (const block_q5_K *)vx + ib0;

    float tmp = 0; // partial sum for thread in warp

#if QK_K == 256
    const uint16_t kmask1 = 0x3f3f;
    const uint16_t kmask2 = 0x0f0f;
    const uint16_t kmask3 = 0xc0c0;

    const int tid = threadIdx.x/2;  // 0...15
    const int ix  = threadIdx.x%2;

    const int il  = tid/4;     // 0...3
    const int ir  = tid - 4*il;// 0...3
    const int n   = 2;

    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
    const int in = il%2;

    const int l0 = n*(2*ir + in);
    const int q_offset = 32*im + l0;
    const int y_offset = 64*im + l0;

    const uint8_t hm1  = 1 << (2*im);
    const uint8_t hm2  = hm1 << 4;

    uint16_t aux[4];
    const uint8_t * sc = (const uint8_t *)aux;

Michael Yang's avatar
Michael Yang committed
1142
1143
1144
    uint16_t q16[8];
    const uint8_t * q4 = (const uint8_t *)q16;

Michael Yang's avatar
Michael Yang committed
1145
1146
1147
1148
1149
1150
1151
    for (int i = ix; i < num_blocks_per_row; i += 2) {

        const uint8_t * ql1 = x[i].qs + q_offset;
        const uint8_t * qh  = x[i].qh + l0;
        const float   * y1  = yy + i*QK_K + y_offset;
        const float   * y2  = y1 + 128;

Michael Yang's avatar
Michael Yang committed
1152
1153
        const float dall = x[i].dm.x;
        const float dmin = x[i].dm.y;
Michael Yang's avatar
Michael Yang committed
1154
1155
1156
1157
1158
1159
1160
1161
1162

        const uint16_t * a = (const uint16_t *)x[i].scales;
        aux[0] = a[im+0] & kmask1;
        aux[1] = a[im+2] & kmask1;
        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);

        float4 sum = {0.f, 0.f, 0.f, 0.f};
        float smin = 0;
Michael Yang's avatar
Michael Yang committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        const uint16_t * q1 = (const uint16_t *)ql1;
        const uint16_t * q2 = q1 + 32;
        q16[0] = q1[0] & 0x0f0f;
        q16[1] = q1[8] & 0x0f0f;
        q16[2] = (q1[0] >> 4) & 0x0f0f;
        q16[3] = (q1[8] >> 4) & 0x0f0f;
        q16[4] = q2[0] & 0x0f0f;
        q16[5] = q2[8] & 0x0f0f;
        q16[6] = (q2[0] >> 4) & 0x0f0f;
        q16[7] = (q2[8] >> 4) & 0x0f0f;
Michael Yang's avatar
Michael Yang committed
1173
        for (int l = 0; l < n; ++l) {
Michael Yang's avatar
Michael Yang committed
1174
1175
1176
1177
1178
1179
1180
1181
            sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
                   + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
            sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
                   + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
            sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
                   + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
            sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
                   + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
Michael Yang's avatar
Michael Yang committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
        }
        tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
    }

#else
    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
    const int step = tid * K_QUANTS_PER_ITERATION;
    const int im = step/8;
    const int in = step%8;

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
        const uint8_t * q = x[i].qs + step;
        const int8_t  * s = x[i].scales;
        const float   * y = yy + i*QK_K + step;
        const float     d = x[i].d;
        float sum = 0.f;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            const uint8_t h = x[i].qh[in+j] >> im;
            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
        }
        tmp += sum;
    }
#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {

    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");

    const int row = blockIdx.y*blockDim.y + threadIdx.y;
    if (row > nrows) return;

    const int num_blocks_per_row = ncols / QK_K;
    const int ib0 = row*num_blocks_per_row;

    const block_q6_K * x = (const block_q6_K *)vx + ib0;

#if QK_K == 256

    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1

    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8

    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
    const int in = tid - step*im;                        // 0...15 or 0...7

#if K_QUANTS_PER_ITERATION == 1
    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
    const int is = 0;
#else
    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
    const int is = in / 4;
#endif
    const int ql_offset = 64*im + l0;
    const int qh_offset = 32*im + l0;
    const int s_offset  =  8*im + is;
    const int y_offset = 128*im + l0;

    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + y_offset;
        const uint8_t * ql = x[i].ql + ql_offset;
        const uint8_t * qh = x[i].qh + qh_offset;
        const int8_t  * s  = x[i].scales + s_offset;

        const float d = x[i].d;

#if K_QUANTS_PER_ITERATION == 1
        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
        tmp += sum;
#else
        float sum = 0;
        for (int l = 0; l < 4; ++l) {
            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
        }
        tmp += sum;
#endif

    }

#else

    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3

    const int step = tid * K_QUANTS_PER_ITERATION;

    float tmp = 0; // partial sum for thread in warp

    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {

        const float   * y  = yy + i * QK_K + step;
        const uint8_t * ql = x[i].ql + step;
        const uint8_t * qh = x[i].qh + step;
        const int8_t  * s  = x[i].scales;

        const float d = x[i+0].d;

        float sum = 0;
        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
        }
        tmp += sum;

    }

#endif

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
        dst[row] = tmp;
    }
}

static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
    const half * x = (const half *) vx;

    // automatic half -> float type cast if dfloat == float
    v.x = x[ib + iqs + 0];
    v.y = x[ib + iqs + 1];
}

Michael Yang's avatar
Michael Yang committed
1341
1342
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
    const int ix = blockDim.x*blockIdx.x + threadIdx.x;
Michael Yang's avatar
Michael Yang committed
1343

Michael Yang's avatar
Michael Yang committed
1344
    if (ix >= kx_padded) {
Michael Yang's avatar
Michael Yang committed
1345
1346
1347
        return;
    }

Michael Yang's avatar
Michael Yang committed
1348
1349
1350
1351
    const int iy = blockDim.y*blockIdx.y + threadIdx.y;

    const int i_padded = iy*kx_padded + ix;

Michael Yang's avatar
Michael Yang committed
1352
1353
    block_q8_1 * y = (block_q8_1 *) vy;

Michael Yang's avatar
Michael Yang committed
1354
1355
    const int ib = i_padded / QK8_1; // block index
    const int iqs = i_padded % QK8_1; // quant index
Michael Yang's avatar
Michael Yang committed
1356

Michael Yang's avatar
Michael Yang committed
1357
    const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
Michael Yang's avatar
Michael Yang committed
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
    float amax = fabsf(xi);
    float sum = xi;

#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
        sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
    }

    const float d = amax / 127;
    const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);

    y[ib].qs[iqs] = q;

    if (iqs > 0) {
        return;
    }

Michael Yang's avatar
Michael Yang committed
1376
1377
    y[ib].ds.x = d;
    y[ib].ds.y = sum;
Michael Yang's avatar
Michael Yang committed
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
    const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;

    if (i >= k) {
        return;
    }

    const int ib = i/qk; // block index
    const int iqs = (i%qk)/qr; // quant index
    const int iybs = i - i%qk; // y block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel(vx, ib, iqs, v);

    y[iybs + iqs + 0]        = v.x;
    y[iybs + iqs + y_offset] = v.y;
}

Michael Yang's avatar
Michael Yang committed
1401
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
Michael Yang's avatar
Michael Yang committed
1402
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
Michael Yang's avatar
Michael Yang committed
1403

Michael Yang's avatar
Michael Yang committed
1404
1405
#define VDR_Q4_0_Q8_1_MMVQ 2
#define VDR_Q4_0_Q8_1_MMQ  4
Michael Yang's avatar
Michael Yang committed
1406

Michael Yang's avatar
Michael Yang committed
1407
1408
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
    const int * v, const int * u, const float & d4, const half2 & ds8) {
Michael Yang's avatar
Michael Yang committed
1409

Michael Yang's avatar
Michael Yang committed
1410
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
Michael Yang's avatar
Michael Yang committed
1411
    int sumi = 0;
Michael Yang's avatar
Michael Yang committed
1412

Michael Yang's avatar
Michael Yang committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
#pragma unroll
    for (int i = 0; i < vdr; ++i) {
        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;

        // SIMD dot product of quantized values
        sumi = __dp4a(vi0, u[2*i+0], sumi);
        sumi = __dp4a(vi1, u[2*i+1], sumi);
    }

1423
1424
    const float2 ds8f = __half22float2(ds8);

Michael Yang's avatar
Michael Yang committed
1425
    // second part effectively subtracts 8 from each quant value
1426
    return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
Michael Yang's avatar
Michael Yang committed
1427
#else
1428
    assert(false);
Michael Yang's avatar
Michael Yang committed
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q4_1_Q8_1_MMVQ 2
#define VDR_Q4_1_Q8_1_MMQ  4

template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
    const int * v, const int * u, const half2 & dm4, const half2 & ds8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

#pragma unroll
    for (int i = 0; i < vdr; ++i) {
        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;

        // SIMD dot product of quantized values
        sumi = __dp4a(vi0, u[2*i+0], sumi);
        sumi = __dp4a(vi1, u[2*i+1], sumi);
    }
Michael Yang's avatar
Michael Yang committed
1451

Michael Yang's avatar
Michael Yang committed
1452
#ifdef GGML_CUDA_F16
1453
1454
1455
    const float2 tmp = __half22float2(__hmul2(dm4, ds8));
    const float d4d8 = tmp.x;
    const float m4s8 = tmp.y;
Michael Yang's avatar
Michael Yang committed
1456
#else
1457
1458
1459
1460
    const float2 dm4f = __half22float2(dm4);
    const float2 ds8f = __half22float2(ds8);
    const float d4d8 = dm4f.x * ds8f.x;
    const float m4s8 = dm4f.y * ds8f.y;
Michael Yang's avatar
Michael Yang committed
1461
1462
1463
1464
1465
#endif // GGML_CUDA_F16

    // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
    return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
#else
1466
    assert(false);
Michael Yang's avatar
Michael Yang committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q5_0_Q8_1_MMVQ 2
#define VDR_Q5_0_Q8_1_MMQ  4

template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
    const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

1480
#pragma unroll
Michael Yang's avatar
Michael Yang committed
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
    for (int i = 0; i < vdr; ++i) {
        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values

        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
    }

1497
1498
    const float2 ds8f = __half22float2(ds8);

Michael Yang's avatar
Michael Yang committed
1499
    // second part effectively subtracts 16 from each quant value
1500
    return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
Michael Yang's avatar
Michael Yang committed
1501
#else
1502
    assert(false);
Michael Yang's avatar
Michael Yang committed
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q5_1_Q8_1_MMVQ 2
#define VDR_Q5_1_Q8_1_MMQ  4

template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
    const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

1516
#pragma unroll
Michael Yang's avatar
Michael Yang committed
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
    for (int i = 0; i < vdr; ++i) {
        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values

        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
    }

#ifdef GGML_CUDA_F16
1534
1535
1536
    const float2 tmp = __half22float2(__hmul2(dm5, ds8));
    const float d5d8 = tmp.x;
    const float m5s8 = tmp.y;
Michael Yang's avatar
Michael Yang committed
1537
#else
1538
1539
1540
1541
    const float2 dm5f = __half22float2(dm5);
    const float2 ds8f = __half22float2(ds8);
    const float d5d8 = dm5f.x * ds8f.x;
    const float m5s8 = dm5f.y * ds8f.y;
Michael Yang's avatar
Michael Yang committed
1542
1543
1544
1545
1546
1547
#endif // GGML_CUDA_F16

    // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
    return sumi*d5d8 + m5s8 / (QI5_1 / vdr);

#else
1548
    assert(false);
Michael Yang's avatar
Michael Yang committed
1549
1550
1551
1552
1553
1554
1555
1556
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8

template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
1557
    const int * v, const int * u, const float & d8_0, const float & d8_1) {
Michael Yang's avatar
Michael Yang committed
1558
1559
1560
1561

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

1562
#pragma unroll
Michael Yang's avatar
Michael Yang committed
1563
1564
1565
1566
1567
    for (int i = 0; i < vdr; ++i) {
        // SIMD dot product of quantized values
        sumi = __dp4a(v[i], u[i], sumi);
    }

1568
    return d8_0*d8_1 * sumi;
Michael Yang's avatar
Michael Yang committed
1569
#else
1570
    assert(false);
Michael Yang's avatar
Michael Yang committed
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
    const int * v, const int * u, const half2 & dm8, const half2 & ds8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

1581
#pragma unroll
Michael Yang's avatar
Michael Yang committed
1582
1583
1584
1585
1586
1587
    for (int i = 0; i < vdr; ++i) {
        // SIMD dot product of quantized values
        sumi = __dp4a(v[i], u[i], sumi);
    }

#ifdef GGML_CUDA_F16
1588
1589
1590
    const float2 tmp = __half22float2(__hmul2(dm8, ds8));
    const float d8d8 = tmp.x;
    const float m8s8 = tmp.y;
Michael Yang's avatar
Michael Yang committed
1591
#else
1592
1593
1594
1595
    const float2 dm8f = __half22float2(dm8);
    const float2 ds8f = __half22float2(ds8);
    const float d8d8 = dm8f.x * ds8f.x;
    const float m8s8 = dm8f.y * ds8f.y;
Michael Yang's avatar
Michael Yang committed
1596
1597
1598
1599
#endif // GGML_CUDA_F16

    // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
    return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
Michael Yang's avatar
Michael Yang committed
1600
#else
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ  2

// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
    const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
    const half2 & dm2, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf_d = 0.0f;
    float sumf_m = 0.0f;

#pragma unroll
    for (int i = 0; i < QR2_K; ++i) {
        const int sc = scales[2*i];

        const int vi = (v >> (2*i)) & 0x03030303;

        sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product

        // fill int with 4x m
        int m = sc >> 4;
        m |= m <<  8;
        m |= m << 16;
        sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
    }

    const float2 dm2f = __half22float2(dm2);

    return dm2f.x*sumf_d - dm2f.y*sumf_m;
#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
    const half2 & dm2, const float & d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi_d = 0;
    int sumi_m = 0;

#pragma unroll
    for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
        int sumi_d_sc = 0;

        const int sc = scales[i0 / (QI8_1/2)];

        // fill int with 4x m
        int m = sc >> 4;
        m |= m <<  8;
        m |= m << 16;

#pragma unroll
        for (int i = i0; i < i0 + QI8_1/2; ++i) {
            sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
            sumi_m    = __dp4a(m,    u[i], sumi_m); // multiply sum of q8_1 values with m
        }

        sumi_d += sumi_d_sc * (sc & 0xF);
    }

    const float2 dm2f = __half22float2(dm2);

    return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q3_K_Q8_1_MMVQ 1
#define VDR_Q3_K_Q8_1_MMQ  2

// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
    const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
    const int & scale_offset, const float & d3, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf = 0.0f;

#pragma unroll
    for (int i = 0; i < QR3_K; ++i) {
        const int isc = scale_offset + 2*i;

        const int isc_low = isc % (QK_K/32);
        const int sc_shift_low = 4 * (isc / (QK_K/32));
        const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;

        const int isc_high = isc % (QK_K/64);
        const int sc_shift_high = 2 * (isc / (QK_K/64));
        const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;

        const int sc = (sc_low | sc_high) - 32;

        const int vil = (vl >> (2*i)) & 0x03030303;

        const int vih = ((vh >> i) << 2) & 0x04040404;

        const int vi = __vsubss4(vil, vih);

        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
    }

    return d3 * sumf;
#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
    const float & d3, const float & d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    int sumi = 0;

#pragma unroll
    for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
        int sumi_sc = 0;

        for (int i = i0; i < i0 + QI8_1/2; ++i) {
            sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
        }

        sumi += sumi_sc * scales[i0 / (QI8_1/2)];
    }

    return d3*d8 * sumi;
#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q4_K_Q8_1_MMVQ 2
#define VDR_Q4_K_Q8_1_MMQ  8

// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
    const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf_d = 0.0f;
    float sumf_m = 0.0f;

#pragma unroll
    for (int i = 0; i < QR4_K; ++i) {
        const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
        const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;

        const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
        const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u

        sumf_d += d8[i] * (dot1 * sc[i]);
        sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
    }

    const float2 dm4f = __half22float2(dm4);

    return dm4f.x*sumf_d - dm4f.y*sumf_m;

#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

// contiguous u/y values
// also used for q5_K
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf_d = 0.0f;
    float sumf_m = 0.0f;

#pragma unroll
    for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) {
        int sumi_d = 0;

#pragma unroll
        for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) {
            sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product
            sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
        }

        const float2 ds8f = __half22float2(ds8[i0 / 4]);

        sumf_d += ds8f.x * (sc[i0/4] * sumi_d);
        sumf_m += ds8f.y *   m[i0/4]; // sum of q8_1 block * q4_K min val
    }

    const float2 dm4f = __half22float2(dm4);

    return dm4f.x*sumf_d - dm4f.y*sumf_m;

#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q5_K_Q8_1_MMVQ 2
#define VDR_Q5_K_Q8_1_MMQ  8

// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
    const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
    const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf_d = 0.0f;
    float sumf_m = 0.0f;

#pragma unroll
    for (int i = 0; i < QR5_K; ++i) {
        const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
        const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;

        const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
        const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;

        const int v0i = vl0i | vh0i;
        const int v1i = vl1i | vh1i;

        const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
        const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u

        sumf_d += d8[i] * (dot1 * sc[i]);
        sumf_m += d8[i] * (dot2 * m[i]);

    }

    const float2 dm5f = __half22float2(dm5);

    return dm5f.x*sumf_d - dm5f.y*sumf_m;

#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

#define VDR_Q6_K_Q8_1_MMVQ 1
#define VDR_Q6_K_Q8_1_MMQ  8

// contiguous v/x values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
    const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
    const float & d, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf = 0.0f;

#pragma unroll
    for (int i = 0; i < QR6_K; ++i) {
        const int sc = scales[4*i];

        const int vil = (vl >> (4*i)) & 0x0F0F0F0F;

        const int vih = ((vh >> (4*i)) << 4) & 0x30303030;

        const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32

        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
    }

    return d*sumf;
#else
    assert(false);
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}

// contiguous u/y values
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
    const float & d6, const float * __restrict__ d8) {

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    float sumf_d = 0.0f;

#pragma unroll
    for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
        int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale

#pragma unroll
        for (int i = i0; i < i0 + 2; ++i) {
            sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
            sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product

            sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
            sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
        }

        sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
    }

    return d6 * sumf_d;

#else
    assert(false);
Michael Yang's avatar
Michael Yang committed
1917
    return 0.0f; // only to satisfy the compiler
1918
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
Michael Yang's avatar
Michael Yang committed
1919
1920
}

Michael Yang's avatar
Michael Yang committed
1921
1922
1923
1924
1925
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;

Michael Yang's avatar
Michael Yang committed
1926
1927
1928
1929
1930
1931
1932
1933
1934
    int v[VDR_Q4_0_Q8_1_MMVQ];
    int u[2*VDR_Q4_0_Q8_1_MMVQ];

#pragma unroll
    for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
        v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
    }
Michael Yang's avatar
Michael Yang committed
1935

Michael Yang's avatar
Michael Yang committed
1936
    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
Michael Yang's avatar
Michael Yang committed
1937
1938
}

1939
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
1940

1941
1942
    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
Michael Yang's avatar
Michael Yang committed
1943
1944

    *x_ql = tile_x_qs;
Michael Yang's avatar
Michael Yang committed
1945
    *x_dm = (half2 *) tile_x_d;
Michael Yang's avatar
Michael Yang committed
1946
1947
}

1948
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
Michael Yang's avatar
Michael Yang committed
1949
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
1950
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
1951
1952

    __builtin_assume(i_offset >= 0);
1953
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
1954
1955
1956
1957
1958
1959
1960
1961
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI4_0;
    const int kqsx = k % QI4_0;

    const block_q4_0 * bx0 = (block_q4_0 *) vx;

Michael Yang's avatar
Michael Yang committed
1962
1963
    float * x_dmf = (float *) x_dm;

Michael Yang's avatar
Michael Yang committed
1964
#pragma unroll
1965
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
1966
1967
1968
1969
1970
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
1971

Michael Yang's avatar
Michael Yang committed
1972
        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
Michael Yang's avatar
Michael Yang committed
1973

Michael Yang's avatar
Michael Yang committed
1974
        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
1975
        // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
Michael Yang's avatar
Michael Yang committed
1976
1977
    }

1978
1979
    const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
    const int kbxd = k % blocks_per_tile_x_row;
Michael Yang's avatar
Michael Yang committed
1980

1981
1982
1983
#pragma unroll
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
        int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
Michael Yang's avatar
Michael Yang committed
1984

1985
1986
1987
        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
1988

1989
        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
Michael Yang's avatar
Michael Yang committed
1990

1991
1992
        x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
    }
Michael Yang's avatar
Michael Yang committed
1993
1994
1995
1996
1997
}

static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
Michael Yang's avatar
Michael Yang committed
1998

Michael Yang's avatar
Michael Yang committed
1999
    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
Michael Yang's avatar
Michael Yang committed
2000
    const float * x_dmf = (float *) x_dm;
Michael Yang's avatar
Michael Yang committed
2001

Michael Yang's avatar
Michael Yang committed
2002
    int u[2*VDR_Q4_0_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2003

Michael Yang's avatar
Michael Yang committed
2004
2005
#pragma unroll
    for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
2006
2007
        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
Michael Yang's avatar
Michael Yang committed
2008
    }
Michael Yang's avatar
Michael Yang committed
2009

Michael Yang's avatar
Michael Yang committed
2010
2011
    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
2012
         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
Michael Yang's avatar
Michael Yang committed
2013
2014
}

Michael Yang's avatar
Michael Yang committed
2015
2016
2017
2018
2019
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;

Michael Yang's avatar
Michael Yang committed
2020
2021
2022
2023
2024
2025
2026
2027
2028
    int v[VDR_Q4_1_Q8_1_MMVQ];
    int u[2*VDR_Q4_1_Q8_1_MMVQ];

#pragma unroll
    for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
        v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
    }
Michael Yang's avatar
Michael Yang committed
2029

Michael Yang's avatar
Michael Yang committed
2030
    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
Michael Yang's avatar
Michael Yang committed
2031
2032
}

2033
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2034

2035
2036
    __shared__ int   tile_x_qs[mmq_y * (WARP_SIZE) +     + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
Michael Yang's avatar
Michael Yang committed
2037
2038
2039
2040
2041

    *x_ql = tile_x_qs;
    *x_dm = tile_x_dm;
}

2042
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
Michael Yang's avatar
Michael Yang committed
2043
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2044
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2045
2046

    __builtin_assume(i_offset >= 0);
2047
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2048
2049
2050
2051
2052
2053
2054
2055
2056
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI4_1;
    const int kqsx = k % QI4_1;

    const block_q4_1 * bx0 = (block_q4_1 *) vx;

#pragma unroll
2057
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2058
2059
2060
2061
2062
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;

        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
    const int kbxd = k % blocks_per_tile_x_row;

#pragma unroll
2073
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
Michael Yang's avatar
Michael Yang committed
2074
2075
2076
2077
2078
        int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091

        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;

        x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
    }
}

static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));

Michael Yang's avatar
Michael Yang committed
2092
    int u[2*VDR_Q4_1_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2093

Michael Yang's avatar
Michael Yang committed
2094
2095
#pragma unroll
    for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
2096
2097
        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
Michael Yang's avatar
Michael Yang committed
2098
    }
Michael Yang's avatar
Michael Yang committed
2099

Michael Yang's avatar
Michael Yang committed
2100
2101
    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
2102
         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
Michael Yang's avatar
Michael Yang committed
2103
2104
}

Michael Yang's avatar
Michael Yang committed
2105
2106
2107
2108
2109
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;

Michael Yang's avatar
Michael Yang committed
2110
2111
2112
    int vl[VDR_Q5_0_Q8_1_MMVQ];
    int vh[VDR_Q5_0_Q8_1_MMVQ];
    int  u[2*VDR_Q5_0_Q8_1_MMVQ];
Michael Yang's avatar
Michael Yang committed
2113

Michael Yang's avatar
Michael Yang committed
2114
2115
2116
2117
2118
2119
2120
2121
2122
#pragma unroll
    for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
        vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
        vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
    }

    return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
Michael Yang's avatar
Michael Yang committed
2123
2124
}

2125
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2126

2127
2128
    __shared__ int  tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
Michael Yang's avatar
Michael Yang committed
2129
2130

    *x_ql = tile_x_ql;
Michael Yang's avatar
Michael Yang committed
2131
    *x_dm = (half2 *) tile_x_d;
Michael Yang's avatar
Michael Yang committed
2132
2133
}

2134
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
Michael Yang's avatar
Michael Yang committed
2135
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2136
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2137
2138

    __builtin_assume(i_offset >= 0);
2139
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2140
2141
2142
2143
2144
2145
2146
2147
2148
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI5_0;
    const int kqsx = k % QI5_0;

    const block_q5_0 * bx0 = (block_q5_0 *) vx;

#pragma unroll
2149
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2150
2151
2152
2153
2154
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2155
2156
2157

        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;

Michael Yang's avatar
Michael Yang committed
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
        const int ql = get_int_from_uint8(bxi->qs, kqsx);
        const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));

        int qs0 = (ql >>  0)   & 0x0F0F0F0F;
        qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
        qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
        qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
        qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
        qs0     = __vsubss4(qs0, 0x10101010); // subtract 16

        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;

        int qs1 = (ql >>  4)   & 0x0F0F0F0F;
        qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
        qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
        qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
        qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
        qs1     = __vsubss4(qs1, 0x10101010); // subtract 16

        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
Michael Yang's avatar
Michael Yang committed
2178
2179
2180
2181
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
    const int kbxd = k % blocks_per_tile_x_row;
Michael Yang's avatar
Michael Yang committed
2182
    float * x_dmf = (float *) x_dm;
Michael Yang's avatar
Michael Yang committed
2183
2184

#pragma unroll
2185
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
Michael Yang's avatar
Michael Yang committed
2186
2187
2188
2189
2190
        int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2191
2192

        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
Michael Yang's avatar
Michael Yang committed
2193

Michael Yang's avatar
Michael Yang committed
2194
        x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
Michael Yang's avatar
Michael Yang committed
2195
2196
2197
2198
2199
2200
2201
2202
2203
    }
}

static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
    const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
2204
2205
    const float * x_dmf = (const float *) x_dm;
    const float * y_df  = (const float *) y_ds;
Michael Yang's avatar
Michael Yang committed
2206

Michael Yang's avatar
Michael Yang committed
2207
    int u[2*VDR_Q5_0_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2208

Michael Yang's avatar
Michael Yang committed
2209
2210
#pragma unroll
    for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
2211
2212
        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
Michael Yang's avatar
Michael Yang committed
2213
    }
Michael Yang's avatar
Michael Yang committed
2214

Michael Yang's avatar
Michael Yang committed
2215
    return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
2216
        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
Michael Yang's avatar
Michael Yang committed
2217
2218
}

Michael Yang's avatar
Michael Yang committed
2219
2220
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
Michael Yang's avatar
Michael Yang committed
2221

Michael Yang's avatar
Michael Yang committed
2222
    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
Michael Yang's avatar
Michael Yang committed
2223

Michael Yang's avatar
Michael Yang committed
2224
2225
2226
    int vl[VDR_Q5_1_Q8_1_MMVQ];
    int vh[VDR_Q5_1_Q8_1_MMVQ];
    int  u[2*VDR_Q5_1_Q8_1_MMVQ];
Michael Yang's avatar
Michael Yang committed
2227

Michael Yang's avatar
Michael Yang committed
2228
2229
2230
2231
2232
2233
2234
2235
2236
#pragma unroll
    for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
        vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
        vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
    }

    return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
Michael Yang's avatar
Michael Yang committed
2237
}
Michael Yang's avatar
Michael Yang committed
2238

2239
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2240

2241
2242
    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
Michael Yang's avatar
Michael Yang committed
2243
2244
2245

    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
2246
2247
}

2248
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
Michael Yang's avatar
Michael Yang committed
2249
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2250
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
2251

Michael Yang's avatar
Michael Yang committed
2252
    __builtin_assume(i_offset >= 0);
2253
    __builtin_assume(i_offset < nwarps);
Michael Yang's avatar
Michael Yang committed
2254
2255
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);
2256

Michael Yang's avatar
Michael Yang committed
2257
2258
    const int kbx  = k / QI5_1;
    const int kqsx = k % QI5_1;
2259

Michael Yang's avatar
Michael Yang committed
2260
    const block_q5_1 * bx0 = (block_q5_1 *) vx;
2261

Michael Yang's avatar
Michael Yang committed
2262
#pragma unroll
2263
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2264
2265
2266
2267
2268
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
2269

Michael Yang's avatar
Michael Yang committed
2270
        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
2271

Michael Yang's avatar
Michael Yang committed
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
        const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));

        int qs0 = (ql >>  0) & 0x0F0F0F0F;
        qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
        qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
        qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
        qs0    |= (qh << 25) & 0x10000000; // 3 -> 28

        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;

        int qs1 = (ql >>  4) & 0x0F0F0F0F;
        qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
        qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
        qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
        qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28

        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
Michael Yang's avatar
Michael Yang committed
2290
    }
2291

Michael Yang's avatar
Michael Yang committed
2292
2293
    const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
    const int kbxd = k % blocks_per_tile_x_row;
2294

Michael Yang's avatar
Michael Yang committed
2295
#pragma unroll
2296
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
Michael Yang's avatar
Michael Yang committed
2297
2298
2299
2300
2301
        int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2302
2303

        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
2304

Michael Yang's avatar
Michael Yang committed
2305
        x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
2306
    }
Michael Yang's avatar
Michael Yang committed
2307
2308
2309
2310
2311
2312
2313
2314
2315
}

static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
    const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;

Michael Yang's avatar
Michael Yang committed
2316
    int u[2*VDR_Q5_1_Q8_1_MMQ];
2317

Michael Yang's avatar
Michael Yang committed
2318
2319
#pragma unroll
    for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
2320
2321
        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
Michael Yang's avatar
Michael Yang committed
2322
    }
Michael Yang's avatar
Michael Yang committed
2323

Michael Yang's avatar
Michael Yang committed
2324
    return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
2325
        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
2326
2327
}

Michael Yang's avatar
Michael Yang committed
2328
2329
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
2330

Michael Yang's avatar
Michael Yang committed
2331
    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
2332

Michael Yang's avatar
Michael Yang committed
2333
2334
2335
    int v[VDR_Q8_0_Q8_1_MMVQ];
    int u[VDR_Q8_0_Q8_1_MMVQ];

2336
#pragma unroll
Michael Yang's avatar
Michael Yang committed
2337
2338
2339
2340
    for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
        v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
        u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
    }
2341

2342
    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
Michael Yang's avatar
Michael Yang committed
2343
}
2344

2345
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
2346

2347
2348
    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
2349

Michael Yang's avatar
Michael Yang committed
2350
    *x_ql = tile_x_qs;
Michael Yang's avatar
Michael Yang committed
2351
    *x_dm = (half2 *) tile_x_d;
Michael Yang's avatar
Michael Yang committed
2352
}
2353

2354
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
Michael Yang's avatar
Michael Yang committed
2355
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2356
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
2357

Michael Yang's avatar
Michael Yang committed
2358
    __builtin_assume(i_offset >= 0);
2359
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2360
2361
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);
2362

Michael Yang's avatar
Michael Yang committed
2363
2364
    const int kbx  = k / QI8_0;
    const int kqsx = k % QI8_0;
Michael Yang's avatar
Michael Yang committed
2365
    float * x_dmf = (float *) x_dm;
2366

Michael Yang's avatar
Michael Yang committed
2367
    const block_q8_0 * bx0 = (block_q8_0 *) vx;
2368

Michael Yang's avatar
Michael Yang committed
2369
#pragma unroll
2370
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2371
2372
2373
2374
2375
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
2376

Michael Yang's avatar
Michael Yang committed
2377
        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
2378

Michael Yang's avatar
Michael Yang committed
2379
2380
        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
    }
2381

2382
2383
    const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
    const int kbxd = k % blocks_per_tile_x_row;
Michael Yang's avatar
Michael Yang committed
2384

2385
2386
2387
#pragma unroll
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
        int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
Michael Yang's avatar
Michael Yang committed
2388

2389
2390
2391
        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2392

2393
        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
Michael Yang's avatar
Michael Yang committed
2394

2395
2396
        x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
    }
Michael Yang's avatar
Michael Yang committed
2397
}
2398

Michael Yang's avatar
Michael Yang committed
2399
2400
2401
2402
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

2403
2404
    const float * x_dmf = (const float *) x_dm;
    const float * y_df  = (const float *) y_ds;
Michael Yang's avatar
Michael Yang committed
2405
2406
2407

    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
        (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
2408
         y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
2409
2410
}

Michael Yang's avatar
Michael Yang committed
2411
2412
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
2413

Michael Yang's avatar
Michael Yang committed
2414
    const block_q2_K * bq2_K = (const block_q2_K *) vbq;
2415

Michael Yang's avatar
Michael Yang committed
2416
2417
    const int bq8_offset = QR2_K * (iqs / QI8_1);
    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
2418

Michael Yang's avatar
Michael Yang committed
2419
    const uint8_t * scales = bq2_K->scales + scale_offset;
Michael Yang's avatar
Michael Yang committed
2420

Michael Yang's avatar
Michael Yang committed
2421
    const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
2422
    int    u[QR2_K];
Michael Yang's avatar
Michael Yang committed
2423
    float d8[QR2_K];
Michael Yang's avatar
Michael Yang committed
2424

2425
#pragma unroll
Michael Yang's avatar
Michael Yang committed
2426
2427
2428
2429
    for (int i = 0; i < QR2_K; ++ i) {
        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
        d8[i] = bq8_1[bq8_offset + i].ds.x;
    }
2430

2431
    return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
Michael Yang's avatar
Michael Yang committed
2432
}
Michael Yang's avatar
Michael Yang committed
2433

2434
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2435

2436
2437
2438
    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
Michael Yang's avatar
Michael Yang committed
2439
2440
2441
2442
2443
2444

    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
    *x_sc = tile_x_sc;
}

2445
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
Michael Yang's avatar
Michael Yang committed
2446
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2447
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2448
2449

    __builtin_assume(i_offset >= 0);
2450
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2451
2452
2453
2454
2455
2456
2457
2458
2459
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI2_K;
    const int kqsx = k % QI2_K;

    const block_q2_K * bx0 = (block_q2_K *) vx;

#pragma unroll
2460
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2461
2462
2463
2464
2465
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475

        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;

        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
    const int kbxd = k % blocks_per_tile_x_row;

#pragma unroll
2476
2477
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
        int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
Michael Yang's avatar
Michael Yang committed
2478
2479
2480
2481

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2482
2483
2484
2485
2486
2487
2488

        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;

        x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
    }

#pragma unroll
2489
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
Michael Yang's avatar
Michael Yang committed
2490
2491
2492
2493
2494
        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505

        const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);

        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
    }
}

static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

2506
2507
2508
    const int kbx = k / QI2_K;
    const int ky  = (k % QI2_K) * QR2_K;
    const float * y_df = (const float *) y_ds;
Michael Yang's avatar
Michael Yang committed
2509

2510
    int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2511

2512
2513
    const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
    const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
Michael Yang's avatar
Michael Yang committed
2514

2515
2516
2517
#pragma unroll
    for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
        v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
Michael Yang's avatar
Michael Yang committed
2518
2519
    }

2520
    const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
Michael Yang's avatar
Michael Yang committed
2521

2522
2523
    const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
    return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
Michael Yang's avatar
Michael Yang committed
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
}

static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

    const block_q3_K * bq3_K = (const block_q3_K *) vbq;

    const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);

    const float d = bq3_K->d;

    const int vl = get_int_from_uint8(bq3_K->qs, iqs);

    // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
    const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;

2541
    int    u[QR3_K];
Michael Yang's avatar
Michael Yang committed
2542
2543
    float d8[QR3_K];

2544
#pragma unroll
Michael Yang's avatar
Michael Yang committed
2545
2546
2547
2548
2549
    for (int i = 0; i < QR3_K; ++i) {
        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
        d8[i] = bq8_1[bq8_offset + i].ds.x;
    }

2550
    return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
Michael Yang's avatar
Michael Yang committed
2551
2552
}

2553
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2554

2555
2556
2557
2558
    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
    __shared__ int   tile_x_qh[mmq_y * (WARP_SIZE/2)     + mmq_y/2];
    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
Michael Yang's avatar
Michael Yang committed
2559
2560
2561
2562
2563
2564
2565

    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
    *x_qh = tile_x_qh;
    *x_sc = tile_x_sc;
}

2566
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
Michael Yang's avatar
Michael Yang committed
2567
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2568
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2569
2570

    __builtin_assume(i_offset >= 0);
2571
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2572
2573
2574
2575
2576
2577
2578
2579
2580
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI3_K;
    const int kqsx = k % QI3_K;

    const block_q3_K * bx0 = (block_q3_K *) vx;

#pragma unroll
2581
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2582
2583
2584
2585
2586
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2587
2588
2589
2590
2591
2592
2593
2594

        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;

        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
    const int kbxd = k % blocks_per_tile_x_row;
2595
    float * x_dmf = (float *) x_dm;
Michael Yang's avatar
Michael Yang committed
2596
2597

#pragma unroll
2598
2599
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
        int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
Michael Yang's avatar
Michael Yang committed
2600
2601
2602
2603

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2604
2605
2606

        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;

2607
        x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
Michael Yang's avatar
Michael Yang committed
2608
2609
2610
    }

#pragma unroll
2611
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
Michael Yang's avatar
Michael Yang committed
2612
2613
2614
2615
2616
        int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2617
2618
2619

        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);

2620
2621
        // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
        x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
Michael Yang's avatar
Michael Yang committed
2622
2623
2624
    }

#pragma unroll
2625
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
Michael Yang's avatar
Michael Yang committed
2626
2627
2628
2629
2630
        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2631
2632
2633

        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);

2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
        const int ksc = k % (QI3_K/4);

        const int ksc_low = ksc % (QI3_K/8);
        const int shift_low = 4 * (ksc / (QI3_K/8));
        const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;

        const int ksc_high = QI3_K/8;
        const int shift_high = 2 * ksc;
        const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;

        const int sc = __vsubss4(sc_low | sc_high, 0x20202020);

        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
Michael Yang's avatar
Michael Yang committed
2647
2648
2649
2650
2651
2652
2653
2654
    }
}

static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {

    const int kbx  = k / QI3_K;
2655
2656
2657
    const int ky  = (k % QI3_K) * QR3_K;
    const float * x_dmf = (const float *) x_dm;
    const float * y_df  = (const float *) y_ds;
Michael Yang's avatar
Michael Yang committed
2658

2659
    const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
Michael Yang's avatar
Michael Yang committed
2660

2661
    int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2662

2663
2664
2665
2666
2667
#pragma unroll
    for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
        const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
        const int shift = 2 * ((ky % 32) / 8);
        const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
Michael Yang's avatar
Michael Yang committed
2668

2669
2670
        const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
        const int vlh = (vh << 2) & 0x04040404;
Michael Yang's avatar
Michael Yang committed
2671

2672
        v[l] = __vsubss4(vll, vlh);
Michael Yang's avatar
Michael Yang committed
2673
2674
    }

2675
2676
    const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
    return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
Michael Yang's avatar
Michael Yang committed
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
}

static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

#ifndef GGML_QKK_64
    const block_q4_K * bq4_K = (const block_q4_K *) vbq;

    int    v[2];
    int    u[2*QR4_K];
    float d8[QR4_K];

Michael Yang's avatar
Michael Yang committed
2689
2690
    // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
    const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
Michael Yang's avatar
Michael Yang committed
2691
2692
2693
2694
2695
2696

    // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
    // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
    // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
    // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108

Michael Yang's avatar
Michael Yang committed
2697
    const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
Michael Yang's avatar
Michael Yang committed
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
    v[0] = q4[0];
    v[1] = q4[4];

    const uint16_t * scales = (const uint16_t *)bq4_K->scales;
    uint16_t aux[2];
    const int j = bq8_offset/2;
    if (j < 2) {
        aux[0] = scales[j+0] & 0x3f3f;
        aux[1] = scales[j+2] & 0x3f3f;
    } else {
        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
    }
    const uint8_t * sc = (const uint8_t *)aux;
    const uint8_t * m  = sc + 2;

    for (int i = 0; i < QR4_K; ++i) {
        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
        d8[i] = bq8i->ds.x;

Michael Yang's avatar
Michael Yang committed
2718
        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
Michael Yang's avatar
Michael Yang committed
2719
2720
2721
2722
        u[2*i+0] = q8[0];
        u[2*i+1] = q8[4];
    }

2723
    return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
Michael Yang's avatar
Michael Yang committed
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745

#else

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    const block_q4_K * bq4_K = (const block_q4_K *) vbq;

    float sumf_d = 0.0f;
    float sumf_m = 0.0f;

    uint16_t aux16[2];
    const uint8_t * s = (const uint8_t *)aux16;

    const uint16_t * a = (const uint16_t *)bq4_K->scales;
    aux16[0] = a[0] & 0x0f0f;
    aux16[1] = (a[0] >> 4) & 0x0f0f;

    const float dall = bq4_K->d[0];
    const float dmin = bq4_K->d[1];

    const float d8_1 = bq8_1[0].ds.x;
    const float d8_2 = bq8_1[1].ds.x;

Michael Yang's avatar
Michael Yang committed
2746
2747
2748
2749
    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
Michael Yang's avatar
Michael Yang committed
2750

Michael Yang's avatar
Michael Yang committed
2751
    const int * q4 = (const int *)bq4_K->qs + (iqs/2);
Michael Yang's avatar
Michael Yang committed
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
    const int v1 = q4[0];
    const int v2 = q4[4];

    const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
    const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
    const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
    const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));

    sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
    sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);

    return dall * sumf_d - dmin * sumf_m;

#else
2766
    assert(false);
Michael Yang's avatar
Michael Yang committed
2767
2768
2769
2770
2771
2772
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A

#endif
}

2773
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2774

2775
2776
2777
    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
Michael Yang's avatar
Michael Yang committed
2778
2779
2780
2781
2782
2783

    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
    *x_sc = tile_x_sc;
}

2784
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
Michael Yang's avatar
Michael Yang committed
2785
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2786
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2787
2788

    __builtin_assume(i_offset >= 0);
2789
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2790
2791
2792
2793
2794
2795
2796
2797
2798
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI4_K; // == 0 if QK_K == 256
    const int kqsx = k % QI4_K; // == k if QK_K == 256

    const block_q4_K * bx0 = (block_q4_K *) vx;

#pragma unroll
2799
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2800
2801
2802
2803
2804
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2805
2806
2807
2808
2809
2810
2811

        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;

        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
2812
    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
Michael Yang's avatar
Michael Yang committed
2813
2814

#pragma unroll
2815
2816
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
        int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
Michael Yang's avatar
Michael Yang committed
2817
2818
2819
2820

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2821
2822
2823
2824
2825
2826
2827

        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;

        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
    }

#pragma unroll
2828
2829
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
Michael Yang's avatar
Michael Yang committed
2830
2831
2832
2833

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2834
2835
2836

        const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);

2837
        const int * scales = (int *) bxi->scales;
Michael Yang's avatar
Michael Yang committed
2838

2839
        const int ksc = k % (WARP_SIZE/8);
Michael Yang's avatar
Michael Yang committed
2840

2841
2842
2843
        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
Michael Yang's avatar
Michael Yang committed
2844

2845
        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
Michael Yang's avatar
Michael Yang committed
2846
2847
2848
    }
}

2849
2850
2851
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
Michael Yang's avatar
Michael Yang committed
2852

2853
    int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
Michael Yang's avatar
Michael Yang committed
2854

2855
2856
2857
2858
#pragma unroll
    for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
        v[l + 0]         = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
        v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
Michael Yang's avatar
Michael Yang committed
2859
2860
    }

2861
    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
Michael Yang's avatar
Michael Yang committed
2862

2863
2864
    const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
    return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
Michael Yang's avatar
Michael Yang committed
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
}

static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {

#ifndef GGML_QKK_64
    const block_q5_K * bq5_K = (const block_q5_K *) vbq;

    int   vl[2];
    int   vh[2];
    int    u[2*QR5_K];
    float d8[QR5_K];

Michael Yang's avatar
Michael Yang committed
2878
2879
2880
    const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
    const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
    const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
Michael Yang's avatar
Michael Yang committed
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897

    vl[0] = ql[0];
    vl[1] = ql[4];

    vh[0] = qh[0] >> bq8_offset;
    vh[1] = qh[4] >> bq8_offset;

    const uint16_t * scales = (const uint16_t *)bq5_K->scales;
    uint16_t aux[2];
    const int j = bq8_offset/2;
    if (j < 2) {
        aux[0] = scales[j+0] & 0x3f3f;
        aux[1] = scales[j+2] & 0x3f3f;
    } else {
        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
    }
Michael Yang's avatar
Michael Yang committed
2898
2899
    const uint8_t * sc = (const uint8_t *)aux;
    const uint8_t * m  = sc + 2;
2900

2901
#pragma unroll
Michael Yang's avatar
Michael Yang committed
2902
2903
2904
2905
    for (int i = 0; i < QR5_K; ++i) {
        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
        d8[i] = bq8i->ds.x;

Michael Yang's avatar
Michael Yang committed
2906
        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
Michael Yang's avatar
Michael Yang committed
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
        u[2*i+0] = q8[0];
        u[2*i+1] = q8[4];
    }

    return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8);

#else

#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
    const block_q5_K * bq5_K = (const block_q5_K *) vbq;

    const int8_t * s = bq5_K->scales;

    const float d = bq5_K->d;

    const float d8_1 = bq8_1[0].ds.x;
    const float d8_2 = bq8_1[1].ds.x;

Michael Yang's avatar
Michael Yang committed
2925
2926
2927
2928
    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
Michael Yang's avatar
Michael Yang committed
2929

Michael Yang's avatar
Michael Yang committed
2930
    const int * ql = (const int *)bq5_K->qs + (iqs/2);
Michael Yang's avatar
Michael Yang committed
2931
2932
2933
    const int vl1 = ql[0];
    const int vl2 = ql[4];

Michael Yang's avatar
Michael Yang committed
2934
2935
    const int step = 4 * (iqs/2); // 0, 4, 8, 12
    const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
Michael Yang's avatar
Michael Yang committed
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
    const int in = step%8; // 0, 4, 0, 4
    const int vh = (*((const int *)(bq5_K->qh + in))) >> im;

    const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
    const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
    const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
    const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);

    const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
                       + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);

    return d * sumf_d;

#else
2950
    assert(false);
Michael Yang's avatar
Michael Yang committed
2951
2952
2953
2954
2955
2956
    return 0.0f; // only to satisfy the compiler
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A

#endif
}

2957
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
Michael Yang's avatar
Michael Yang committed
2958

2959
2960
2961
    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
Michael Yang's avatar
Michael Yang committed
2962
2963
2964
2965
2966
2967

    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
    *x_sc = tile_x_sc;
}

2968
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
Michael Yang's avatar
Michael Yang committed
2969
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
2970
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
Michael Yang's avatar
Michael Yang committed
2971
2972

    __builtin_assume(i_offset >= 0);
2973
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
2974
2975
2976
2977
2978
2979
2980
2981
2982
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);

    const int kbx  = k / QI5_K; // == 0 if QK_K == 256
    const int kqsx = k % QI5_K; // == k if QK_K == 256

    const block_q5_K * bx0 = (block_q5_K *) vx;

#pragma unroll
2983
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
2984
2985
2986
2987
2988
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
2989
2990

        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
2991
        const int ky = QR5_K*kqsx;
Michael Yang's avatar
Michael Yang committed
2992

2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
        const int ql1 = (ql >> 4) & 0x0F0F0F0F;

        const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
        const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
        const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;

        const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
        const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);

        x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
        x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
Michael Yang's avatar
Michael Yang committed
3006
3007
3008
    }

    const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
3009
    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
Michael Yang's avatar
Michael Yang committed
3010
3011

#pragma unroll
3012
3013
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
        int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
Michael Yang's avatar
Michael Yang committed
3014
3015
3016
3017

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
3018
3019
3020
3021
3022
3023
3024

        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;

        x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
    }

#pragma unroll
3025
3026
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
Michael Yang's avatar
Michael Yang committed
3027
3028
3029
3030

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
3031
3032
3033

        const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);

3034
        const int * scales = (int *) bxi->scales;
Michael Yang's avatar
Michael Yang committed
3035

3036
        const int ksc = k % (WARP_SIZE/8);
Michael Yang's avatar
Michael Yang committed
3037

3038
3039
3040
        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
Michael Yang's avatar
Michael Yang committed
3041

3042
        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
Michael Yang's avatar
Michael Yang committed
3043
3044
    }
}
3045

3046
3047
3048
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
Michael Yang's avatar
Michael Yang committed
3049

3050
    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
Michael Yang's avatar
Michael Yang committed
3051

3052
3053
3054
    const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
    const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
    return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
Michael Yang's avatar
Michael Yang committed
3055
}
Michael Yang's avatar
Michael Yang committed
3056

Michael Yang's avatar
Michael Yang committed
3057
3058
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
Michael Yang's avatar
Michael Yang committed
3059

Michael Yang's avatar
Michael Yang committed
3060
    const block_q6_K * bq6_K = (const block_q6_K *) vbq;
Michael Yang's avatar
Michael Yang committed
3061

Michael Yang's avatar
Michael Yang committed
3062
3063
3064
    const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
    const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
    const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
Michael Yang's avatar
Michael Yang committed
3065

Michael Yang's avatar
Michael Yang committed
3066
3067
    const int vl = get_int_from_uint8(bq6_K->ql, iqs);
    const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
Michael Yang's avatar
Michael Yang committed
3068

Michael Yang's avatar
Michael Yang committed
3069
    const int8_t * scales = bq6_K->scales + scale_offset;
Michael Yang's avatar
Michael Yang committed
3070

Michael Yang's avatar
Michael Yang committed
3071
3072
    int    u[QR6_K];
    float d8[QR6_K];
Michael Yang's avatar
Michael Yang committed
3073

3074
#pragma unroll
Michael Yang's avatar
Michael Yang committed
3075
3076
3077
3078
    for (int i = 0; i < QR6_K; ++i) {
        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
        d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
    }
Michael Yang's avatar
Michael Yang committed
3079

3080
    return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
3081
3082
}

3083
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
3084

3085
3086
3087
    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
3088

Michael Yang's avatar
Michael Yang committed
3089
3090
3091
3092
    *x_ql = tile_x_ql;
    *x_dm = tile_x_dm;
    *x_sc = tile_x_sc;
}
Michael Yang's avatar
Michael Yang committed
3093

3094
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
Michael Yang's avatar
Michael Yang committed
3095
    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
Michael Yang's avatar
Michael Yang committed
3096
    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
3097

Michael Yang's avatar
Michael Yang committed
3098
    __builtin_assume(i_offset >= 0);
3099
    __builtin_assume(i_offset <  nwarps);
Michael Yang's avatar
Michael Yang committed
3100
3101
    __builtin_assume(k >= 0);
    __builtin_assume(k <  WARP_SIZE);
3102

Michael Yang's avatar
Michael Yang committed
3103
3104
    const int kbx  = k / QI6_K; // == 0 if QK_K == 256
    const int kqsx = k % QI6_K; // == k if QK_K == 256
3105

Michael Yang's avatar
Michael Yang committed
3106
    const block_q6_K * bx0 = (block_q6_K *) vx;
3107

Michael Yang's avatar
Michael Yang committed
3108
#pragma unroll
3109
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
Michael Yang's avatar
Michael Yang committed
3110
3111
3112
3113
3114
        int i = i0 + i_offset;

        if (need_check) {
            i = min(i, i_max);
        }
3115

Michael Yang's avatar
Michael Yang committed
3116
        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
3117
        const int ky = QR6_K*kqsx;
Michael Yang's avatar
Michael Yang committed
3118

3119
3120
3121
        const int ql = get_int_from_uint8(bxi->ql, kqsx);
        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
Michael Yang's avatar
Michael Yang committed
3122

3123
3124
3125
        const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
        const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
        const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
Michael Yang's avatar
Michael Yang committed
3126

3127
3128
        const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
        const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
3129

3130
3131
        x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
        x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
Michael Yang's avatar
Michael Yang committed
3132
3133
    }

3134
3135
3136
3137
    const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
    float * x_dmf = (float *) x_dm;

Michael Yang's avatar
Michael Yang committed
3138
#pragma unroll
3139
3140
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
        int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
Michael Yang's avatar
Michael Yang committed
3141
3142
3143
3144

        if (need_check) {
            i = min(i, i_max);
        }
3145

3146
        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
3147

3148
        x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
Michael Yang's avatar
Michael Yang committed
3149
    }
Michael Yang's avatar
Michael Yang committed
3150

Michael Yang's avatar
Michael Yang committed
3151
#pragma unroll
3152
3153
    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
Michael Yang's avatar
Michael Yang committed
3154
3155
3156
3157

        if (need_check) {
            i = min(i, i_max);
        }
Michael Yang's avatar
Michael Yang committed
3158

Michael Yang's avatar
Michael Yang committed
3159
        const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
3160

Michael Yang's avatar
Michael Yang committed
3161
        x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
3162
    }
Michael Yang's avatar
Michael Yang committed
3163
}
3164

Michael Yang's avatar
Michael Yang committed
3165
3166
3167
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
Michael Yang's avatar
Michael Yang committed
3168

3169
3170
    const float * x_dmf = (const float *) x_dm;
    const float * y_df  = (const float *) y_ds;
Michael Yang's avatar
Michael Yang committed
3171

3172
    const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
Michael Yang's avatar
Michael Yang committed
3173

3174
3175
3176
    const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
    const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
    return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
Michael Yang's avatar
Michael Yang committed
3177
}
Michael Yang's avatar
Michael Yang committed
3178

3179
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
Michael Yang's avatar
Michael Yang committed
3180
              allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
3181
static __device__ __forceinline__ void mul_mat_q(
Michael Yang's avatar
Michael Yang committed
3182
3183
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
Michael Yang's avatar
Michael Yang committed
3184

Michael Yang's avatar
Michael Yang committed
3185
3186
    const block_q_t  * x = (const block_q_t  *) vx;
    const block_q8_1 * y = (const block_q8_1 *) vy;
Michael Yang's avatar
Michael Yang committed
3187

Michael Yang's avatar
Michael Yang committed
3188
3189
3190
    const int blocks_per_row_x = ncols_x / qk;
    const int blocks_per_col_y = nrows_y / QK8_1;
    const int blocks_per_warp = WARP_SIZE / qi;
Michael Yang's avatar
Michael Yang committed
3191

Michael Yang's avatar
Michael Yang committed
3192
    const int & ncols_dst = ncols_y;
3193

3194
    const int row_dst_0 = blockIdx.x*mmq_y;
Michael Yang's avatar
Michael Yang committed
3195
    const int & row_x_0 = row_dst_0;
3196

3197
    const int col_dst_0 = blockIdx.y*mmq_x;
Michael Yang's avatar
Michael Yang committed
3198
    const int & col_y_0 = col_dst_0;
3199

Michael Yang's avatar
Michael Yang committed
3200
3201
3202
3203
    int   * tile_x_ql = nullptr;
    half2 * tile_x_dm = nullptr;
    int   * tile_x_qh = nullptr;
    int   * tile_x_sc = nullptr;
3204

Michael Yang's avatar
Michael Yang committed
3205
    allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
3206

3207
3208
    __shared__ int    tile_y_qs[mmq_x * WARP_SIZE];
    __shared__ half2  tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
3209

3210
    float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
3211

Michael Yang's avatar
Michael Yang committed
3212
    for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
3213

Michael Yang's avatar
Michael Yang committed
3214
        load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
3215
                   threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
3216

3217
#pragma unroll
Michael Yang's avatar
Michael Yang committed
3218
        for (int ir = 0; ir < qr; ++ir) {
3219
            const int kqs = ir*WARP_SIZE + threadIdx.x;
Michael Yang's avatar
Michael Yang committed
3220
            const int kbxd = kqs / QI8_1;
3221

3222
3223
3224
#pragma unroll
            for (int i = 0; i < mmq_x; i += nwarps) {
                const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
Michael Yang's avatar
Michael Yang committed
3225
3226

                const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
3227

3228
3229
                const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
                tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
Michael Yang's avatar
Michael Yang committed
3230
3231
            }

3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
#pragma unroll
            for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
                const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
                const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
                const int col_y_eff = min(col_y_0 + ids, ncols_y-1);

                // if the sum is not needed it's faster to transform the scale to f32 ahead of time
                const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
                half2       * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
                if (need_sum) {
                    *dsi_dst = *dsi_src;
                } else {
                    float * dfi_dst = (float *) dsi_dst;
                    *dfi_dst = (*dsi_src).x;
                }
            }
Michael Yang's avatar
Michael Yang committed
3248

3249
            __syncthreads();
Michael Yang's avatar
Michael Yang committed
3250

3251
3252
// #pragma unroll // unrolling this loop causes too much register pressure
            for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
Michael Yang's avatar
Michael Yang committed
3253
#pragma unroll
3254
                for (int j = 0; j < mmq_x; j += nwarps) {
Michael Yang's avatar
Michael Yang committed
3255
#pragma unroll
3256
3257
3258
3259
3260
                    for (int i = 0; i < mmq_y; i += WARP_SIZE) {
                        sum[i/WARP_SIZE][j/nwarps] += vec_dot(
                            tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
                            threadIdx.x + i, threadIdx.y + j, k);
                    }
Michael Yang's avatar
Michael Yang committed
3261
3262
                }
            }
3263

3264
3265
            __syncthreads();
        }
Michael Yang's avatar
Michael Yang committed
3266
3267
    }

3268
3269
3270
#pragma unroll
    for (int j = 0; j < mmq_x; j += nwarps) {
        const int col_dst = col_dst_0 + j + threadIdx.y;
Michael Yang's avatar
Michael Yang committed
3271
3272
3273
3274
3275

        if (col_dst >= ncols_dst) {
            return;
        }

3276
3277
3278
3279
3280
3281
3282
3283
3284
#pragma unroll
        for (int i = 0; i < mmq_y; i += WARP_SIZE) {
            const int row_dst = row_dst_0 + threadIdx.x + i;

            if (row_dst >= nrows_dst) {
                continue;
            }

            dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
Michael Yang's avatar
Michael Yang committed
3285
3286
        }
    }
Michael Yang's avatar
Michael Yang committed
3287
3288
}

3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
#define  MMQ_X_Q4_0_AMPERE 64
#define  MMQ_Y_Q4_0_AMPERE 128
#define NWARPS_Q4_0_AMPERE 4
#define  MMQ_X_Q4_0_PASCAL 64
#define  MMQ_Y_Q4_0_PASCAL 64
#define NWARPS_Q4_0_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q4_0(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
    const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
    const int nwarps = NWARPS_Q4_0_AMPERE;

    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q4_0_PASCAL;
    const int mmq_y  =  MMQ_Y_Q4_0_PASCAL;
    const int nwarps = NWARPS_Q4_0_PASCAL;

    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q4_0_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q4_1_AMPERE 64
#define  MMQ_Y_Q4_1_AMPERE 128
#define NWARPS_Q4_1_AMPERE 4
#define  MMQ_X_Q4_1_PASCAL 64
#define  MMQ_Y_Q4_1_PASCAL 64
#define NWARPS_Q4_1_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q4_1(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
    const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
    const int nwarps = NWARPS_Q4_1_AMPERE;

    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q4_1_PASCAL;
    const int mmq_y  =  MMQ_Y_Q4_1_PASCAL;
    const int nwarps = NWARPS_Q4_1_PASCAL;

    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q4_1_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q5_0_AMPERE 128
#define  MMQ_Y_Q5_0_AMPERE 64
#define NWARPS_Q5_0_AMPERE 4
#define  MMQ_X_Q5_0_PASCAL 64
#define  MMQ_Y_Q5_0_PASCAL 64
#define NWARPS_Q5_0_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q5_0(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
    const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
    const int nwarps = NWARPS_Q5_0_AMPERE;

    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q5_0_PASCAL;
    const int mmq_y  =  MMQ_Y_Q5_0_PASCAL;
    const int nwarps = NWARPS_Q5_0_PASCAL;

    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q5_0_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q5_1_AMPERE 128
#define  MMQ_Y_Q5_1_AMPERE 64
#define NWARPS_Q5_1_AMPERE 4
#define  MMQ_X_Q5_1_PASCAL 64
#define  MMQ_Y_Q5_1_PASCAL 64
#define NWARPS_Q5_1_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q5_1(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
    const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
    const int nwarps = NWARPS_Q5_1_AMPERE;

    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q5_1_PASCAL;
    const int mmq_y  =  MMQ_Y_Q5_1_PASCAL;
    const int nwarps = NWARPS_Q5_1_PASCAL;

    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q5_1_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q8_0_AMPERE 128
#define  MMQ_Y_Q8_0_AMPERE 64
#define NWARPS_Q8_0_AMPERE 4
#define  MMQ_X_Q8_0_PASCAL 64
#define  MMQ_Y_Q8_0_PASCAL 64
#define NWARPS_Q8_0_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q8_0(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
    const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
    const int nwarps = NWARPS_Q8_0_AMPERE;

    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q8_0_PASCAL;
    const int mmq_y  =  MMQ_Y_Q8_0_PASCAL;
    const int nwarps = NWARPS_Q8_0_PASCAL;

    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q8_0_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q2_K_AMPERE 64
#define  MMQ_Y_Q2_K_AMPERE 128
#define NWARPS_Q2_K_AMPERE 4
#define  MMQ_X_Q2_K_PASCAL 64
#define  MMQ_Y_Q2_K_PASCAL 64
#define NWARPS_Q2_K_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q2_K(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
    const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
    const int nwarps = NWARPS_Q2_K_AMPERE;

    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q2_K_PASCAL;
    const int mmq_y  =  MMQ_Y_Q2_K_PASCAL;
    const int nwarps = NWARPS_Q2_K_PASCAL;

    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q2_K_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q3_K_AMPERE 128
#define  MMQ_Y_Q3_K_AMPERE 128
#define NWARPS_Q3_K_AMPERE 4
#define  MMQ_X_Q3_K_PASCAL 64
#define  MMQ_Y_Q3_K_PASCAL 64
#define NWARPS_Q3_K_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q3_K(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
    const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
    const int nwarps = NWARPS_Q3_K_AMPERE;

    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q3_K_PASCAL;
    const int mmq_y  =  MMQ_Y_Q3_K_PASCAL;
    const int nwarps = NWARPS_Q3_K_PASCAL;

    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q3_K_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q4_K_AMPERE 64
#define  MMQ_Y_Q4_K_AMPERE 128
#define NWARPS_Q4_K_AMPERE 4
#define  MMQ_X_Q4_K_PASCAL 32
#define  MMQ_Y_Q4_K_PASCAL 64
#define NWARPS_Q4_K_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q4_K(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
    const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
    const int nwarps = NWARPS_Q4_K_AMPERE;

    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q4_K_PASCAL;
    const int mmq_y  =  MMQ_Y_Q4_K_PASCAL;
    const int nwarps = NWARPS_Q4_K_PASCAL;

    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q4_K_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q5_K_AMPERE 64
#define  MMQ_Y_Q5_K_AMPERE 128
#define NWARPS_Q5_K_AMPERE 4
#define  MMQ_X_Q5_K_PASCAL 64
#define  MMQ_Y_Q5_K_PASCAL 64
#define NWARPS_Q5_K_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q5_K(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
    const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
    const int nwarps = NWARPS_Q5_K_AMPERE;

    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q5_K_PASCAL;
    const int mmq_y  =  MMQ_Y_Q5_K_PASCAL;
    const int nwarps = NWARPS_Q5_K_PASCAL;

    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q5_K_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

#define  MMQ_X_Q6_K_AMPERE 64
#define  MMQ_Y_Q6_K_AMPERE 64
#define NWARPS_Q6_K_AMPERE 4
#define  MMQ_X_Q6_K_PASCAL 32
#define  MMQ_Y_Q6_K_PASCAL 64
#define NWARPS_Q6_K_PASCAL 8

template <bool need_check> static __global__ void mul_mat_q6_K(
    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {

#if __CUDA_ARCH__ >= CC_TURING
    const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
    const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
    const int nwarps = NWARPS_Q6_K_AMPERE;

    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);

#elif __CUDA_ARCH__ >= MIN_CC_DP4A
    const int mmq_x  =  MMQ_X_Q6_K_PASCAL;
    const int mmq_y  =  MMQ_Y_Q6_K_PASCAL;
    const int nwarps = NWARPS_Q6_K_PASCAL;

    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
    (void) vec_dot_q6_K_q8_1_mul_mat;
    assert(false);
#endif // __CUDA_ARCH__ >= CC_TURING
}

Michael Yang's avatar
Michael Yang committed
3629
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
Michael Yang's avatar
Michael Yang committed
3630
3631
3632
3633
3634
3635
3636
3637
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
    const int row = blockIdx.y*blockDim.y + threadIdx.y;

    if (row >= nrows) {
        return;
    }

    const int blocks_per_row = ncols / qk;
Michael Yang's avatar
Michael Yang committed
3638
    const int blocks_per_warp = vdr * WARP_SIZE / qi;
Michael Yang's avatar
Michael Yang committed
3639
3640
3641
3642
3643
3644
3645
3646

// partial sum for each thread
    float tmp = 0.0f;

    const block_q_t  * x = (const block_q_t  *) vx;
    const block_q8_1 * y = (const block_q8_1 *) vy;

    for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
Michael Yang's avatar
Michael Yang committed
3647
        const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
Michael Yang's avatar
Michael Yang committed
3648

Michael Yang's avatar
Michael Yang committed
3649
        const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
Michael Yang's avatar
Michael Yang committed
3650

Michael Yang's avatar
Michael Yang committed
3651
        const int iqs  = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
Michael Yang's avatar
Michael Yang committed
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683

        tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[row] = tmp;
    }
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
    // qk = quantized weights per x block
    // qr = number of quantized weights per data value in x block
    const int row = blockIdx.y*blockDim.y + threadIdx.y;

    if (row >= nrows) {
        return;
    }

    const int tid = threadIdx.x;

    const int iter_stride = 2*GGML_CUDA_DMMV_X;
    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
    const int y_offset = qr == 1 ? 1 : qk/2;

// partial sum for each thread
Michael Yang's avatar
Michael Yang committed
3684
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3685
3686
3687
    half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
    float tmp = 0.0f;
Michael Yang's avatar
Michael Yang committed
3688
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707

    for (int i = 0; i < ncols; i += iter_stride) {
        const int col = i + vals_per_iter*tid;
        const int ib = (row*ncols + col)/qk; // x block index
        const int iqs = (col%qk)/qr; // x quant index
        const int iybs = col - col%qk; // y block start index

// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
        for (int j = 0; j < vals_per_iter; j += 2) {
            // process 2 vals per j iter

            // dequantize
            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
            dfloat2 v;
            dequantize_kernel(vx, ib, iqs + j/qr, v);

            // matrix multiplication
            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
Michael Yang's avatar
Michael Yang committed
3708
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3709
3710
3711
3712
3713
3714
3715
            tmp += __hmul2(v, {
                y[iybs + iqs + j/qr + 0],
                y[iybs + iqs + j/qr + y_offset]
            });
#else
            tmp += v.x * y[iybs + iqs + j/qr + 0];
            tmp += v.y * y[iybs + iqs + j/qr + y_offset];
Michael Yang's avatar
Michael Yang committed
3716
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
        }
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (tid == 0) {
Michael Yang's avatar
Michael Yang committed
3727
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3728
3729
3730
        dst[row] = tmp.x + tmp.y;
#else
        dst[row] = tmp;
Michael Yang's avatar
Michael Yang committed
3731
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
3732
3733
3734
    }
}

Michael Yang's avatar
Michael Yang committed
3735
3736
3737
3738
static __global__ void mul_mat_p021_f16_f32(
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {

Michael Yang's avatar
Michael Yang committed
3739
3740
3741
3742
    const half * x = (const half *) vx;

    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
Michael Yang's avatar
Michael Yang committed
3743
    const int channel_x = channel / (nchannels_y / nchannels_x);
Michael Yang's avatar
Michael Yang committed
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758

    const int nrows_y = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst = row_x;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

        // x is transposed and permuted
Michael Yang's avatar
Michael Yang committed
3759
        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
Michael Yang's avatar
Michael Yang committed
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
        const float xi = __half2float(x[ix]);

        const int row_y = col_x;


        // y is not transposed but permuted
        const int iy = channel*nrows_y + row_y;

        tmp += xi * y[iy];
    }

    // dst is not transposed and not permuted
    const int idst = channel*nrows_dst + row_dst;

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
Michael Yang's avatar
Michael Yang committed
3787
    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
Michael Yang's avatar
Michael Yang committed
3788
3789
3790
3791
3792

    const half * x = (const half *) vx;

    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
Michael Yang's avatar
Michael Yang committed
3793
    const int channel_x = channel / channel_x_divisor;
Michael Yang's avatar
Michael Yang committed
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809

    const int nrows_y = ncols_x;
    const int nrows_dst = nrows_x;
    const int row_dst = row_x;

    const int idst = channel*nrows_dst + row_dst;

    float tmp = 0.0f;

    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
        const int col_x = col_x0 + threadIdx.x;

        if (col_x >= ncols_x) {
            break;
        }

Michael Yang's avatar
Michael Yang committed
3810
        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
Michael Yang's avatar
Michael Yang committed
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
        const float xi = __half2float(x[ix]);

        const int row_y = col_x;

        const int iy = channel*nrows_y + row_y;

        tmp += xi * y[iy];
    }

    // sum up partial sums and write back result
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    if (threadIdx.x == 0) {
        dst[idst] = tmp;
    }
}

static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    float * dsti = (float *) cdsti;

    *dsti = *xi;
}

static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
    const float * xi = (const float *) cxi;
    half * dsti = (half *) cdsti;

    *dsti = __float2half(*xi);
}

template <cpy_kernel_t cpy_1>
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
                                   const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
                                   const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= ne) {
        return;
    }

    // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
    // then combine those indices with the corresponding byte offsets to get the total offsets
    const int i02 = i / (ne00*ne01);
    const int i01 = (i - i02*ne01*ne00) / ne00;
    const int i00 = i - i02*ne01*ne00 - i01*ne00;
    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;

    const int i12 = i / (ne10*ne11);
    const int i11 = (i - i12*ne10*ne11) / ne10;
    const int i10 = i - i12*ne10*ne11 - i11*ne10;
    const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;

    cpy_1(cx + x_offset, cdst + dst_offset);
}

// rope == RoPE == rotary positional embedding
Michael Yang's avatar
Michael Yang committed
3871
3872
static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
                                const float p_delta, const int p_delta_rows, const float theta_scale) {
Michael Yang's avatar
Michael Yang committed
3873
3874
3875
3876
3877
3878
3879
3880
3881
    const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);

    if (col >= ncols) {
        return;
    }

    const int row = blockDim.y*blockIdx.y + threadIdx.y;
    const int i = row*ncols + col;

Michael Yang's avatar
Michael Yang committed
3882
    const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
Michael Yang's avatar
Michael Yang committed
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
    const float sin_theta = sinf(theta);
    const float cos_theta = cosf(theta);

    const float x0 = x[i + 0];
    const float x1 = x[i + 1];

    dst[i + 0] = x0*cos_theta - x1*sin_theta;
    dst[i + 1] = x0*sin_theta + x1*cos_theta;
}

3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
    const int col = blockDim.x*blockIdx.x + threadIdx.x;
    const int half_n_dims = ncols/4;

    if (col >= half_n_dims) {
        return;
    }

    const int row = blockDim.y*blockIdx.y + threadIdx.y;
    const int i = row*ncols + col;

    const float col_theta_scale = powf(theta_scale, col);

    const float theta = p*col_theta_scale;
    const float sin_theta = sinf(theta);
    const float cos_theta = cosf(theta);

    const float x0 = x[i + 0];
    const float x1 = x[i + half_n_dims];

    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;

    const float block_theta = block_p*col_theta_scale;
    const float sin_block_theta = sinf(block_theta);
    const float cos_block_theta = cosf(block_theta);

    const float x2 = x[i + half_n_dims * 2];
    const float x3 = x[i + half_n_dims * 3];

    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
}

Michael Yang's avatar
Michael Yang committed
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
    const int col = blockDim.x*blockIdx.x + threadIdx.x;
    const int row = blockDim.y*blockIdx.y + threadIdx.y;

    if (col >= ncols) {
        return;
    }

    const int i = row*ncols + col;
    // dst[i] = col > n_past + row ? -INFINITY : x[i];
    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
}

// the CUDA soft max implementation differs from the CPU implementation
// instead of doubles floats are used
// values are also not normalized to the maximum value by subtracting it in the exponential function
// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
    const int row = blockDim.y*blockIdx.y + threadIdx.y;
    const int block_size = blockDim.x;
    const int tid = threadIdx.x;

    float tmp = 0.0;

    for (int block_start = 0; block_start < ncols; block_start += block_size) {
        const int col = block_start + tid;

        if (col >= ncols) {
            break;
        }

        const int i = row*ncols + col;
        const float val = expf(x[i]);
        tmp += val;
        dst[i] = val;
    }

    // sum up partial sums
#pragma unroll
    for (int mask = 16; mask > 0; mask >>= 1) {
        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
    }

    for (int block_start = 0; block_start < ncols; block_start += block_size) {
        const int col = block_start + tid;

        if (col >= ncols) {
            break;
        }

        const int i = row*ncols + col;
        dst[i] /= tmp;
    }
}

static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    dst[i] = scale * x[i];
}

3992
3993
3994
static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
    const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
    add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
Michael Yang's avatar
Michael Yang committed
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
}

static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
    add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
}

static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
    const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
    mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
}

4007
4008
4009
4010
4011
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

Michael Yang's avatar
Michael Yang committed
4012
4013
4014
4015
4016
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

4017
4018
4019
4020
4021
4022
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    const dim3 block_dims(WARP_SIZE, 1, 1);
    norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}

Michael Yang's avatar
Michael Yang committed
4023
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
Michael Yang's avatar
Michael Yang committed
4024
4025
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    const dim3 block_dims(WARP_SIZE, 1, 1);
Michael Yang's avatar
Michael Yang committed
4026
    rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
Michael Yang's avatar
Michael Yang committed
4027
4028
}

Michael Yang's avatar
Michael Yang committed
4029
4030
4031
4032
4033
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
    const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
    const dim3 num_blocks(block_num_x, ky, 1);
    const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
    quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
Michael Yang's avatar
Michael Yang committed
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
}

static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
}

static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int nb = k / QK_K;
#if QK_K == 256
    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
#else
    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}

static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const dim3 block_dims(32, 1, 1);
    dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int ny = 2 / K_QUANTS_PER_ITERATION;
    const int block_num_y = (nrows + ny - 1) / ny;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(32, ny, 1);
    dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
4190
    GGML_ASSERT(ncols % QK4_0 == 0);
Michael Yang's avatar
Michael Yang committed
4191
4192
4193
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
Michael Yang's avatar
Michael Yang committed
4194
    mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
Michael Yang's avatar
Michael Yang committed
4195
4196
4197
4198
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
4199
    GGML_ASSERT(ncols % QK4_1 == 0);
Michael Yang's avatar
Michael Yang committed
4200
4201
4202
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
Michael Yang's avatar
Michael Yang committed
4203
    mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
Michael Yang's avatar
Michael Yang committed
4204
4205
4206
4207
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
4208
    GGML_ASSERT(ncols % QK5_0 == 0);
Michael Yang's avatar
Michael Yang committed
4209
4210
4211
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
Michael Yang's avatar
Michael Yang committed
4212
    mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
Michael Yang's avatar
Michael Yang committed
4213
4214
4215
4216
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
4217
    GGML_ASSERT(ncols % QK5_1 == 0);
Michael Yang's avatar
Michael Yang committed
4218
4219
4220
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
Michael Yang's avatar
Michael Yang committed
4221
    mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
Michael Yang's avatar
Michael Yang committed
4222
4223
4224
4225
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
4226
    GGML_ASSERT(ncols % QK8_0 == 0);
Michael Yang's avatar
Michael Yang committed
4227
4228
4229
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
Michael Yang's avatar
Michael Yang committed
4230
    mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
Michael Yang's avatar
Michael Yang committed
4231
4232
4233
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

4234
4235
4236
4237
4238
static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
4239
    mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
4240
4241
4242
4243
4244
4245
4246
4247
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
4248
    mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
4249
4250
4251
4252
4253
4254
4255
4256
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
4257
    mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
4258
4259
4260
4261
4262
4263
4264
4265
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
4266
    mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
4267
4268
4269
4270
4271
4272
4273
4274
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % QK_K == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
4275
    mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
4276
4277
4278
        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}

Michael Yang's avatar
Michael Yang committed
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
    const dim3 block_nums(1, block_num_y, 1);
    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
    dequantize_mul_mat_vec<1, 1, convert_f16>
        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}

static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_row_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_row_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_row_q5_0_cuda;
        case GGML_TYPE_Q5_1:
            return dequantize_row_q5_1_cuda;
        case GGML_TYPE_Q8_0:
            return dequantize_row_q8_0_cuda;
        case GGML_TYPE_Q2_K:
            return dequantize_row_q2_K_cuda;
        case GGML_TYPE_Q3_K:
            return dequantize_row_q3_K_cuda;
        case GGML_TYPE_Q4_K:
            return dequantize_row_q4_K_cuda;
        case GGML_TYPE_Q5_K:
            return dequantize_row_q5_K_cuda;
        case GGML_TYPE_Q6_K:
            return dequantize_row_q6_K_cuda;
        case GGML_TYPE_F16:
            return convert_fp16_to_fp32_cuda;
        default:
            return nullptr;
    }
}

Michael Yang's avatar
Michael Yang committed
4322
4323
4324
4325
static void ggml_mul_mat_q4_0_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q4_0_AMPERE;
        mmq_y  =  MMQ_Y_Q4_0_AMPERE;
        nwarps = NWARPS_Q4_0_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q4_0_PASCAL;
        mmq_y  =  MMQ_Y_Q4_0_PASCAL;
        nwarps = NWARPS_Q4_0_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4345
    const dim3 block_nums(block_num_x, block_num_y, 1);
4346
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4347

4348
4349
4350
4351
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4352
    } else {
4353
4354
4355
        const bool need_check = true;
        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4356
    }
Michael Yang's avatar
Michael Yang committed
4357
4358
4359
4360
4361
4362
}

static void ggml_mul_mat_q4_1_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q4_1_AMPERE;
        mmq_y  =  MMQ_Y_Q4_1_AMPERE;
        nwarps = NWARPS_Q4_1_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q4_1_PASCAL;
        mmq_y  =  MMQ_Y_Q4_1_PASCAL;
        nwarps = NWARPS_Q4_1_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4382
    const dim3 block_nums(block_num_x, block_num_y, 1);
4383
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4384

4385
4386
4387
4388
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4389
    } else {
4390
4391
4392
        const bool need_check = true;
        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4393
    }
Michael Yang's avatar
Michael Yang committed
4394
4395
4396
4397
4398
4399
}

static void ggml_mul_mat_q5_0_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q5_0_AMPERE;
        mmq_y  =  MMQ_Y_Q5_0_AMPERE;
        nwarps = NWARPS_Q5_0_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q5_0_PASCAL;
        mmq_y  =  MMQ_Y_Q5_0_PASCAL;
        nwarps = NWARPS_Q5_0_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4419
    const dim3 block_nums(block_num_x, block_num_y, 1);
4420
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4421

4422
4423
4424
4425
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4426
    } else {
4427
4428
4429
        const bool need_check = true;
        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4430
    }
Michael Yang's avatar
Michael Yang committed
4431
4432
4433
4434
4435
4436
}

static void ggml_mul_mat_q5_1_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q5_1_AMPERE;
        mmq_y  =  MMQ_Y_Q5_1_AMPERE;
        nwarps = NWARPS_Q5_1_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q5_1_PASCAL;
        mmq_y  =  MMQ_Y_Q5_1_PASCAL;
        nwarps = NWARPS_Q5_1_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4456
    const dim3 block_nums(block_num_x, block_num_y, 1);
4457
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4458

4459
4460
4461
4462
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4463
    } else {
4464
4465
4466
        const bool need_check = true;
        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4467
    }
Michael Yang's avatar
Michael Yang committed
4468
4469
4470
4471
4472
4473
}

static void ggml_mul_mat_q8_0_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q8_0_AMPERE;
        mmq_y  =  MMQ_Y_Q8_0_AMPERE;
        nwarps = NWARPS_Q8_0_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q8_0_PASCAL;
        mmq_y  =  MMQ_Y_Q8_0_PASCAL;
        nwarps = NWARPS_Q8_0_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4493
    const dim3 block_nums(block_num_x, block_num_y, 1);
4494
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4495

4496
4497
4498
4499
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4500
    } else {
4501
4502
4503
        const bool need_check = true;
        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4504
    }
Michael Yang's avatar
Michael Yang committed
4505
4506
4507
4508
4509
4510
}

static void ggml_mul_mat_q2_K_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q2_K_AMPERE;
        mmq_y  =  MMQ_Y_Q2_K_AMPERE;
        nwarps = NWARPS_Q2_K_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q2_K_PASCAL;
        mmq_y  =  MMQ_Y_Q2_K_PASCAL;
        nwarps = NWARPS_Q2_K_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4530
    const dim3 block_nums(block_num_x, block_num_y, 1);
4531
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4532

4533
4534
4535
4536
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4537
    } else {
4538
4539
4540
        const bool need_check = true;
        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4541
    }
Michael Yang's avatar
Michael Yang committed
4542
4543
4544
4545
4546
4547
}

static void ggml_mul_mat_q3_K_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q3_K_AMPERE;
        mmq_y  =  MMQ_Y_Q3_K_AMPERE;
        nwarps = NWARPS_Q3_K_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q3_K_PASCAL;
        mmq_y  =  MMQ_Y_Q3_K_PASCAL;
        nwarps = NWARPS_Q3_K_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4567
    const dim3 block_nums(block_num_x, block_num_y, 1);
4568
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4569

4570
4571
4572
4573
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4574
    } else {
4575
4576
4577
        const bool need_check = true;
        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4578
    }
Michael Yang's avatar
Michael Yang committed
4579
4580
4581
4582
4583
4584
}

static void ggml_mul_mat_q4_K_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q4_K_AMPERE;
        mmq_y  =  MMQ_Y_Q4_K_AMPERE;
        nwarps = NWARPS_Q4_K_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q4_K_PASCAL;
        mmq_y  =  MMQ_Y_Q4_K_PASCAL;
        nwarps = NWARPS_Q4_K_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4604
    const dim3 block_nums(block_num_x, block_num_y, 1);
4605
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4606

4607
4608
4609
4610
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4611
    } else {
4612
4613
4614
        const bool need_check = true;
        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4615
    }
Michael Yang's avatar
Michael Yang committed
4616
4617
4618
4619
4620
4621
}

static void ggml_mul_mat_q5_K_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q5_K_AMPERE;
        mmq_y  =  MMQ_Y_Q5_K_AMPERE;
        nwarps = NWARPS_Q5_K_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q5_K_PASCAL;
        mmq_y  =  MMQ_Y_Q5_K_PASCAL;
        nwarps = NWARPS_Q5_K_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4641
    const dim3 block_nums(block_num_x, block_num_y, 1);
4642
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4643

4644
4645
4646
4647
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4648
    } else {
4649
4650
4651
        const bool need_check = true;
        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4652
    }
Michael Yang's avatar
Michael Yang committed
4653
4654
4655
4656
4657
4658
}

static void ggml_mul_mat_q6_K_q8_1_cuda(
    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {

4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
    const int compute_capability = g_compute_capabilities[id];

    int mmq_x, mmq_y, nwarps;
    if (compute_capability >= CC_TURING) {
        mmq_x  =  MMQ_X_Q6_K_AMPERE;
        mmq_y  =  MMQ_Y_Q6_K_AMPERE;
        nwarps = NWARPS_Q6_K_AMPERE;
    } else if (compute_capability >= MIN_CC_DP4A) {
        mmq_x  =  MMQ_X_Q6_K_PASCAL;
        mmq_y  =  MMQ_Y_Q6_K_PASCAL;
        nwarps = NWARPS_Q6_K_PASCAL;
    } else {
        GGML_ASSERT(false);
    }

    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
Michael Yang's avatar
Michael Yang committed
4678
    const dim3 block_nums(block_num_x, block_num_y, 1);
4679
    const dim3 block_dims(WARP_SIZE, nwarps, 1);
Michael Yang's avatar
Michael Yang committed
4680

4681
4682
4683
4684
    if (nrows_x % mmq_y == 0) {
        const bool need_check = false;
        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4685
    } else {
4686
4687
4688
        const bool need_check = true;
        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
Michael Yang's avatar
Michael Yang committed
4689
    }
Michael Yang's avatar
Michael Yang committed
4690
4691
}

Michael Yang's avatar
Michael Yang committed
4692
4693
4694
4695
4696
static void ggml_mul_mat_p021_f16_f32_cuda(
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {

    const dim3 block_nums(1, nrows_x, nchannels_y);
Michael Yang's avatar
Michael Yang committed
4697
    const dim3 block_dims(WARP_SIZE, 1, 1);
Michael Yang's avatar
Michael Yang committed
4698
    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
Michael Yang's avatar
Michael Yang committed
4699
4700
4701
4702
}

static void ggml_mul_mat_vec_nc_f16_f32_cuda(
    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
Michael Yang's avatar
Michael Yang committed
4703
    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
Michael Yang's avatar
Michael Yang committed
4704

Michael Yang's avatar
Michael Yang committed
4705
    const dim3 block_nums(1, nrows_x, nchannels_y);
Michael Yang's avatar
Michael Yang committed
4706
4707
    const dim3 block_dims(WARP_SIZE, 1, 1);
    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
Michael Yang's avatar
Michael Yang committed
4708
        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
Michael Yang's avatar
Michael Yang committed
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
}

static void ggml_cpy_f32_f32_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}

static void ggml_cpy_f32_f16_cuda(
    const char * cx, char * cdst, const int ne,
    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {

    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
}

static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
    scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}

Michael Yang's avatar
Michael Yang committed
4736
4737
static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
                          const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
Michael Yang's avatar
Michael Yang committed
4738
4739
4740
4741
    GGML_ASSERT(nrows % 2 == 0);
    const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
    const dim3 block_nums(num_blocks_x, nrows, 1);
Michael Yang's avatar
Michael Yang committed
4742
    rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
Michael Yang's avatar
Michael Yang committed
4743
4744
}

4745
4746
4747
4748
4749
4750
4751
4752
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
    GGML_ASSERT(nrows % 4 == 0);
    const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
    const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
    const dim3 block_nums(num_blocks_x, nrows, 1);
    rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
}

Michael Yang's avatar
Michael Yang committed
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
    const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
    const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
    const dim3 block_nums(block_num_x, nrows_x, 1);
    diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
}

static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
    const dim3 block_dims(WARP_SIZE, 1, 1);
    const dim3 block_nums(1, nrows_x, 1);
    soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
}

// buffer pool for cuda
#define MAX_CUDA_BUFFERS 256

struct scoped_spin_lock {
    std::atomic_flag& lock;
    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
        while (lock.test_and_set(std::memory_order_acquire)) {
            ; // spin
        }
    }
    ~scoped_spin_lock() {
        lock.clear(std::memory_order_release);
    }
    scoped_spin_lock(const scoped_spin_lock&) = delete;
    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};

struct cuda_buffer {
    void * ptr = nullptr;
    size_t size = 0;
};

static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;

static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
    scoped_spin_lock lock(g_cuda_pool_lock);
    int id;
    CUDA_CHECK(cudaGetDevice(&id));
Michael Yang's avatar
Michael Yang committed
4795
4796
4797
4798
4799
4800
#ifdef DEBUG_CUDA_MALLOC
    int nnz = 0;
    size_t max_size = 0, tot_size = 0;
#endif
    size_t best_diff = 1ull << 36;
    int ibest = -1;
Michael Yang's avatar
Michael Yang committed
4801
4802
    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[id][i];
Michael Yang's avatar
Michael Yang committed
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
        if (b.ptr != nullptr) {
#ifdef DEBUG_CUDA_MALLOC
            ++nnz;
            tot_size += b.size;
            if (b.size > max_size) max_size = b.size;
#endif
            if (b.size >= size) {
                size_t diff = b.size - size;
                if (diff < best_diff) {
                    best_diff = diff;
                    ibest = i;
                    if (!best_diff) {
                        void * ptr = b.ptr;
                        *actual_size = b.size;
                        b.ptr = nullptr;
                        b.size = 0;
                        return ptr;
                    }
                }
            }
Michael Yang's avatar
Michael Yang committed
4823
4824
        }
    }
Michael Yang's avatar
Michael Yang committed
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
    if (ibest >= 0) {
        cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
        void * ptr = b.ptr;
        *actual_size = b.size;
        b.ptr = nullptr;
        b.size = 0;
        return ptr;
    }
#ifdef DEBUG_CUDA_MALLOC
    fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
            (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
#endif
Michael Yang's avatar
Michael Yang committed
4837
    void * ptr;
Michael Yang's avatar
Michael Yang committed
4838
4839
4840
4841
    size_t look_ahead_size = (size_t) (1.05 * size);
    look_ahead_size = 256 * ((look_ahead_size + 255)/256);
    CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
    *actual_size = look_ahead_size;
Michael Yang's avatar
Michael Yang committed
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
    return ptr;
}

static void ggml_cuda_pool_free(void * ptr, size_t size) {
    scoped_spin_lock lock(g_cuda_pool_lock);
    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[id][i];
        if (b.ptr == nullptr) {
            b.ptr = ptr;
            b.size = size;
            return;
        }
    }
    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
    CUDA_CHECK(cudaFree(ptr));
}


void ggml_init_cublas() {
    static bool initialized = false;

    if (!initialized) {
        CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
        GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
        int64_t total_vram = 0;
        fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
        for (int id = 0; id < g_device_count; ++id) {
            cudaDeviceProp prop;
            CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
            fprintf(stderr, "  Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);

            g_tensor_split[id] = total_vram;
            total_vram += prop.totalGlobalMem;

            g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
        }
        for (int id = 0; id < g_device_count; ++id) {
            g_tensor_split[id] /= total_vram;
        }

        for (int id = 0; id < g_device_count; ++id) {
            CUDA_CHECK(cudaSetDevice(id));

            // create main stream
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));

            // create cublas handle
            CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
            CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
        }

        // configure logging to stdout
        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));

        initialized = true;
    }
}

void ggml_cuda_set_tensor_split(const float * tensor_split) {
Michael Yang's avatar
Michael Yang committed
4904
4905
4906
    if (tensor_split == nullptr) {
        return;
    }
Michael Yang's avatar
Michael Yang committed
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
    bool all_zero = true;
    for (int i = 0; i < g_device_count; ++i) {
        if (tensor_split[i] != 0.0f) {
            all_zero = false;
            break;
        }
    }
    if (all_zero) {
        return;
    }
    float split_sum = 0.0f;
    for (int i = 0; i < g_device_count; ++i) {
        g_tensor_split[i] = split_sum;
        split_sum += tensor_split[i];
    }
    for (int i = 0; i < g_device_count; ++i) {
        g_tensor_split[i] /= split_sum;
    }
}

void * ggml_cuda_host_malloc(size_t size) {
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
        return nullptr;
    }

    void * ptr = nullptr;
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
    if (err != cudaSuccess) {
        // The allocation error can be bypassed. A null ptr will assigned out of this function.
        // This can fixed the OOM error in WSL.
        cudaGetLastError();
        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
            size/1024.0/1024.0, cudaGetErrorString(err));
        return nullptr;
    }

    return ptr;
}

void ggml_cuda_host_free(void * ptr) {
    CUDA_CHECK(cudaFreeHost(ptr));
}

static cudaError_t ggml_cuda_cpy_tensor_2d(
    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {

    cudaMemcpyKind kind;
    char * src_ptr;
    if (src->backend == GGML_BACKEND_CPU) {
        kind = cudaMemcpyHostToDevice;
        src_ptr = (char *) src->data;
    } else if (src->backend == GGML_BACKEND_GPU) {
        kind = cudaMemcpyDeviceToDevice;
        struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
        int id;
        CUDA_CHECK(cudaGetDevice(&id));
        src_ptr = (char *) extra->data_device[id];
    } else {
        GGML_ASSERT(false);
    }
    char * dst_ptr = (char *) dst;

    const int64_t ne0 = src->ne[0];
    const int64_t nb0 = src->nb[0];
    const int64_t nb1 = src->nb[1];
    const int64_t nb2 = src->nb[2];
    const int64_t nb3 = src->nb[3];
    const enum ggml_type type = src->type;
    const int64_t ts = ggml_type_size(type);
    const int64_t bs = ggml_blck_size(type);
    int64_t i1_diff = i1_high - i1_low;

    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
    if (nb0 == ts && nb1 == ts*ne0/bs) {
        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
    } else if (nb0 == ts) {
        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
    } else {
        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
            const void * rx = (const void *) ((const char *) x + i1*nb1);
            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
            // pretend the row is a matrix with cols=1
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
            if (r != cudaSuccess) return r;
        }
        return cudaSuccess;
    }
}

inline void ggml_cuda_op_add(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
5003
    GGML_ASSERT(dst_ddf_i  != nullptr);
Michael Yang's avatar
Michael Yang committed
5004

5005
    const int64_t ne00 = src0->ne[0];
Michael Yang's avatar
Michael Yang committed
5006
5007
    const int64_t i01_diff = i01_high - i01_low;

5008
5009
5010
    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

Michael Yang's avatar
Michael Yang committed
5011
5012
    // compute
    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
5013
        add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5014
    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
5015
        add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
    } else {
        GGML_ASSERT(false);
    }

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_mul(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
5034
    GGML_ASSERT(dst_ddf_i  != nullptr);
Michael Yang's avatar
Michael Yang committed
5035
5036

    const int64_t ne00 = src0->ne[0];
5037
    const int64_t i01_diff = i01_high - i01_low;
Michael Yang's avatar
Michael Yang committed
5038
5039
5040
5041

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

5042
    mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5043

5044
5045
5046
    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
Michael Yang's avatar
Michael Yang committed
5047
    (void) i1;
5048
}
Michael Yang's avatar
Michael Yang committed
5049

5050
5051
5052
5053
inline void ggml_cuda_op_gelu(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){
Michael Yang's avatar
Michael Yang committed
5054

5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);

    (void) src1;
Michael Yang's avatar
Michael Yang committed
5065
5066
    (void) dst;
    (void) src0_ddq_i;
5067
    (void) src1_ddf_i;
Michael Yang's avatar
Michael Yang committed
5068
    (void) i02;
5069
    (void) i1;
Michael Yang's avatar
Michael Yang committed
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
}

inline void ggml_cuda_op_silu(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
inline void ggml_cuda_op_norm(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

Michael Yang's avatar
Michael Yang committed
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
inline void ggml_cuda_op_rms_norm(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

Michael Yang's avatar
Michael Yang committed
5127
5128
5129
    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

Michael Yang's avatar
Michael Yang committed
5130
    // compute
Michael Yang's avatar
Michael Yang committed
5131
    rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5132
5133
5134
5135
5136
5137
5138
5139
5140

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

Michael Yang's avatar
Michael Yang committed
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
inline void ggml_cuda_op_mul_mat_q(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddq_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    GGML_ASSERT(ne10 % QK8_1 == 0);

    const int64_t ne0 = dst->ne[0];

    const int64_t i01_diff = i01_high - i01_low;

    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    // the main device has a larger memory buffer to hold the results from all GPUs
    // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
    const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;

    const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ?
        ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
    size_t as;
    void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as);
    quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main);

    switch (src0->type) {
        case GGML_TYPE_Q4_0:
            ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q4_1:
            ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q5_0:
            ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q5_1:
            ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q8_0:
            ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q2_K:
            ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q3_K:
            ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q4_K:
            ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q5_K:
            ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        case GGML_TYPE_Q6_K:
            ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
            break;
        default:
            GGML_ASSERT(false);
            break;
    }

    ggml_cuda_pool_free(src1_q8_1, as);

    (void) src1;
    (void) dst;
    (void) src0_ddf_i;
    (void) i02;
    (void) i1;
}

5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
static int64_t get_row_rounding(ggml_type type) {
    int max_compute_capability = INT_MIN;
    for (int id = 0; id < g_device_count; ++id) {
        if (max_compute_capability < g_compute_capabilities[id]
                && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
            max_compute_capability = g_compute_capabilities[id];
        }
    }

    switch(type) {
        case GGML_TYPE_Q4_0:
        case GGML_TYPE_Q4_1:
            return max_compute_capability >= CC_TURING ? 128 : 64;
        case GGML_TYPE_Q5_0:
        case GGML_TYPE_Q5_1:
        case GGML_TYPE_Q8_0:
            return 64;
        case GGML_TYPE_F16:
            return 1;
        case GGML_TYPE_Q2_K:
        case GGML_TYPE_Q3_K:
        case GGML_TYPE_Q4_K:
        case GGML_TYPE_Q5_K:
            return max_compute_capability >= CC_TURING ? 128 : 64;
        case GGML_TYPE_Q6_K:
            return 64;
        default:
            GGML_ASSERT(false);
    }
}

Michael Yang's avatar
Michael Yang committed
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
inline void ggml_cuda_op_mul_mat_vec(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddq_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t nrows = i01_high - i01_low;

#ifdef GGML_CUDA_FORCE_DMMV
    const bool use_mul_mat_vec_q = false;
Michael Yang's avatar
Michael Yang committed
5263
    (void) g_compute_capabilities[0];
Michael Yang's avatar
Michael Yang committed
5264
5265
5266
5267
#else
    int id;
    CUDA_CHECK(cudaGetDevice(&id));

5268
5269
    bool mul_mat_vec_q_implemented =
        src0->type == GGML_TYPE_Q4_0 ||
Michael Yang's avatar
Michael Yang committed
5270
5271
5272
5273
        src0->type == GGML_TYPE_Q4_1 ||
        src0->type == GGML_TYPE_Q5_0 ||
        src0->type == GGML_TYPE_Q5_1 ||
        src0->type == GGML_TYPE_Q8_0;
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
#if QK_K == 256
    mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
        src0->type == GGML_TYPE_Q2_K ||
        src0->type == GGML_TYPE_Q3_K ||
        src0->type == GGML_TYPE_Q4_K ||
        src0->type == GGML_TYPE_Q5_K ||
        src0->type == GGML_TYPE_Q6_K;
#endif // QK_K == 256

    const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
Michael Yang's avatar
Michael Yang committed
5284
5285
5286
#endif

    if (use_mul_mat_vec_q) {
Michael Yang's avatar
Michael Yang committed
5287
5288
        const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
            ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
Michael Yang's avatar
Michael Yang committed
5289
5290
        size_t as;
        void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
Michael Yang's avatar
Michael Yang committed
5291
        quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308

        switch (src0->type) {
            case GGML_TYPE_Q4_0:
                mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_1:
                mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_0:
                mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_1:
                mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q8_0:
                mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
            case GGML_TYPE_Q2_K:
                mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q3_K:
                mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_K:
                mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_K:
                mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q6_K:
                mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
Michael Yang's avatar
Michael Yang committed
5324
5325
5326
5327
5328
5329
5330
5331
            default:
                GGML_ASSERT(false);
                break;
        }

        ggml_cuda_pool_free(src1_q8_1, as);
    } else {
        // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
Michael Yang's avatar
Michael Yang committed
5332
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
        size_t ash;
        dfloat * src1_dfloat = nullptr; // dfloat == half

        bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
            src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
            src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;

        if (src1_convert_f16) {
            src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
            ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
                                    ne00, 1, sizeof(float), 0, 0,
                                    ne00, 1, sizeof(half),  0, 0, cudaStream_main);
        }
#else
        dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
Michael Yang's avatar
Michael Yang committed
5348
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388

        switch (src0->type) {
            case GGML_TYPE_Q4_0:
                dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_1:
                dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_0:
                dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_1:
                dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q8_0:
                dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q2_K:
                dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q3_K:
                dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q4_K:
                dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q5_K:
                dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_Q6_K:
                dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            case GGML_TYPE_F16:
                convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
                break;
            default:
                GGML_ASSERT(false);
                break;
        }

Michael Yang's avatar
Michael Yang committed
5389
#ifdef GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
5390
5391
5392
        if (src1_convert_f16) {
            ggml_cuda_pool_free(src1_dfloat, ash);
        }
Michael Yang's avatar
Michael Yang committed
5393
#endif // GGML_CUDA_F16
Michael Yang's avatar
Michael Yang committed
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
    }

    (void) src1;
    (void) dst;
    (void) src0_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_mul_mat_cublas(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(src1_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const float alpha = 1.0f;
    const float beta = 0.0f;

    const int64_t ne00 = src0->ne[0];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    const int64_t ne0 = dst->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    int id;
    CUDA_CHECK(cudaGetDevice(&id));

    // the main device has a larger memory buffer to hold the results from all GPUs
    // ldc == nrows of the matrix that cuBLAS writes into
    int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;

    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
    CUBLAS_CHECK(
        cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
                i01_diff, ne11, ne10,
                &alpha, src0_ddf_i, ne00,
                        src1_ddf_i, ne10,
                &beta,  dst_ddf_i,  ldc));

    (void) dst;
    (void) src0_ddq_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_rope(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
Michael Yang's avatar
Michael Yang committed
5453
    const int64_t ne01 = src0->ne[1];
Michael Yang's avatar
Michael Yang committed
5454
5455
    const int64_t i01_diff = i01_high - i01_low;

Michael Yang's avatar
Michael Yang committed
5456
5457
5458
5459
5460
    const int n_past = ((int32_t *) dst->op_params)[0];
    const int n_dims = ((int32_t *) dst->op_params)[1];
    const int mode   = ((int32_t *) dst->op_params)[2];
    const int n_ctx  = ((int32_t *) dst->op_params)[3];
    // RoPE alteration for extended context
Michael Yang's avatar
Michael Yang committed
5461

Michael Yang's avatar
Michael Yang committed
5462
5463
5464
5465
5466
    float freq_base, freq_scale;
    memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
    memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));

    const float theta_scale = powf(freq_base, -2.0f/n_dims);
Michael Yang's avatar
Michael Yang committed
5467

Michael Yang's avatar
Michael Yang committed
5468
    const bool is_glm = mode & 4;
5469

Michael Yang's avatar
Michael Yang committed
5470
    // compute
5471
    if (is_glm) {
Michael Yang's avatar
Michael Yang committed
5472
        const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
5473
5474
5475
5476
        const float id_p = min(p, n_ctx - 2.f);
        const float block_p = max(p - (n_ctx - 2.f), 0.f);
        rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
    } else {
Michael Yang's avatar
Michael Yang committed
5477
5478
        const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
        rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
5479
    }
Michael Yang's avatar
Michael Yang committed
5480

Michael Yang's avatar
Michael Yang committed
5481
    (void) src1;
Michael Yang's avatar
Michael Yang committed
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i1;
}

inline void ggml_cuda_op_diag_mask_inf(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t i01_diff = i01_high - i01_low;

Michael Yang's avatar
Michael Yang committed
5500
    const int n_past = ((int32_t *) dst->op_params)[0];
Michael Yang's avatar
Michael Yang committed
5501
5502
5503
5504

    // compute
    diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);

Michael Yang's avatar
Michael Yang committed
5505
    (void) src1;
Michael Yang's avatar
Michael Yang committed
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_soft_max(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

inline void ggml_cuda_op_scale(
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
    cudaStream_t & cudaStream_main){

    GGML_ASSERT(src0_ddf_i != nullptr);
    GGML_ASSERT(dst_ddf_i != nullptr);

    const float scale = ((float *) src1->data)[0];

    const int64_t ne00 = src0->ne[0];
    const int64_t i01_diff = i01_high - i01_low;

    // compute
    scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
    CUDA_CHECK(cudaGetLastError());

    (void) src1;
    (void) dst;
    (void) src0_ddq_i;
    (void) src1_ddf_i;
    (void) i02;
    (void) i1;
}

static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
                         ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];
    const int64_t nrows0 = ggml_nrows(src0);

    const bool use_src1 = src1 != nullptr;
    const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
    const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
    const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
    const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
Michael Yang's avatar
Michael Yang committed
5573
5574
5575
    const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;

    GGML_ASSERT(ne03 == ne13);
Michael Yang's avatar
Michael Yang committed
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    const int nb2  = dst->nb[2];
    const int nb3  = dst->nb[3];

    GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);

    // strides for iteration over dims 3 and 2
Michael Yang's avatar
Michael Yang committed
5587
5588
5589
    const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
    const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
    const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
Michael Yang's avatar
Michael Yang committed
5590
5591
5592
5593
    const int64_t src0_stride = ne00 * ne01 * stride_mod;
    const int64_t src1_stride = ne10 * ne11 * stride_mod;
    const int64_t dst_stride = ne0 * ne1 * stride_mod;

Michael Yang's avatar
Michael Yang committed
5594
5595
5596
5597
5598
5599
    const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
    const int64_t i03_max = flatten_rows ? 1 : ne03;
    const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
    const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
    GGML_ASSERT(!(flatten_rows && ne02 < ne12));

Michael Yang's avatar
Michael Yang committed
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
    const size_t src0_ts = ggml_type_size(src0->type);
    const size_t src0_bs = ggml_blck_size(src0->type);

    struct ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
    struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
    struct ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *) dst->extra;

    const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
    const bool src0_is_contiguous = ggml_is_contiguous(src0);
    const bool src0_is_f32 = src0->type == GGML_TYPE_F32;

    const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
    const bool src1_stays_on_host = use_src1 && (
        dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);

    const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
Michael Yang's avatar
Michael Yang committed
5616
    GGML_ASSERT(!(split && ne02 < ne12));
Michael Yang's avatar
Michael Yang committed
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648

    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);

    // dd = data device
    char  * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
    float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
    float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
    float *  dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};

    // asq = actual size quantized, asf = actual size float
    size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
    size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
    size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
    size_t  dst_asf[GGML_CUDA_MAX_DEVICES] = {0};

    // if multiple devices are used they need to wait for the main device
    // here an event is recorded that signifies that the main device has finished calculating the input data
    if (split && g_device_count > 1) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
    }

    for (int id = 0; id < g_device_count; ++id) {
        if (!split && id != g_main_device) {
            continue;
        }

        const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
        const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;

        int64_t row_low, row_high;
        if (split) {
5649
5650
            const int64_t rounding = get_row_rounding(src0->type);

Michael Yang's avatar
Michael Yang committed
5651
            row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
5652
            row_low -= row_low % rounding;
Michael Yang's avatar
Michael Yang committed
5653

Michael Yang's avatar
Michael Yang committed
5654
5655
5656
5657
            if (id == g_device_count - 1) {
                row_high = nrows0;
            } else {
                row_high = nrows0*g_tensor_split[id + 1];
5658
                row_high -= row_high % rounding;
Michael Yang's avatar
Michael Yang committed
5659
            }
Michael Yang's avatar
Michael Yang committed
5660
5661
        } else {
            row_low = 0;
Michael Yang's avatar
Michael Yang committed
5662
            row_high = nrows0*i02_divisor;
Michael Yang's avatar
Michael Yang committed
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
        }
        if (row_low == row_high) {
            continue;
        }

        int64_t row_diff = row_high - row_low;

        cudaSetDevice(id);
        cudaStream_t cudaStream_main = g_cudaStreams_main[id];

        // wait for main GPU data if necessary
        if (split && id != g_main_device) {
            CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
        }

        if (src0_on_device && src0_is_contiguous) {
            if (src0_is_f32) {
                src0_ddf[id] = (float *) src0_extra->data_device[id];
            } else {
                src0_ddq[id] = (char *) src0_extra->data_device[id];
            }
        } else {
            if (src0_is_f32) {
                src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
            } else {
                src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
            }
        }

        if (src0_needs_f32 && !src0_is_f32) {
            src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
        }

        if (use_src1 && !src1_stays_on_host) {
            if (src1_on_device && src1_is_contiguous) {
                src1_ddf[id] = (float *) src1_extra->data_device[id];
            } else {
                src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
            }
        }
        if (dst_on_device) {
            dst_ddf[id] = (float *) dst_extra->data_device[id];
        } else {
            size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
            dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
        }

        for (int64_t i03 = 0; i03 < i03_max; i03++) {
            const int64_t i13 = i03 % ne13;
            for (int64_t i02 = 0; i02 < i02_max; i02++) {
                const int64_t i12 = i02 % ne12;

Michael Yang's avatar
Michael Yang committed
5715
                const int64_t i0 = i03*i02_max + i02;
Michael Yang's avatar
Michael Yang committed
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748

                // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
                const int64_t i0_offset_low = row_low/rows_per_iter;
                const int64_t i0_offset_high = row_high/rows_per_iter;

                int64_t i01_low = 0;
                int64_t i01_high = rows_per_iter;
                if (split) {
                    if (i0 < i0_offset_low || i0 > i0_offset_high) {
                        continue;
                    }
                    if (i0 == i0_offset_low) {
                        i01_low = row_low % rows_per_iter;
                    }
                    if (i0 == i0_offset_high) {
                        i01_high = row_high % rows_per_iter;
                    }
                }

                // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
                // Removing the first assert or changing the order of the arguments causes the second assert to fail.
                // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
                // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
                GGML_ASSERT(i01_low == 0 || g_device_count > 1);
                GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);

                const int64_t i01_diff = i01_high - i01_low;
                if (i01_diff == 0) {
                    continue;
                }
                const int64_t i11 = i13*ne12 + i12;

                // for split tensors the data begins at i0 == i0_offset_low
Michael Yang's avatar
Michael Yang committed
5749
5750
                char  * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
                float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
Michael Yang's avatar
Michael Yang committed
5751
                float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
Michael Yang's avatar
Michael Yang committed
5752
                float * dst_ddf_i  =  dst_ddf[id] + (i0             - i0_offset_low)*dst_stride;
Michael Yang's avatar
Michael Yang committed
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790

                // for split tensors the data pointer needs to be rounded down
                // to the bin edge for i03, i02 bins beyond the first
                if (i0 - i0_offset_low > 0) {
                    GGML_ASSERT(!flatten_rows);
                    src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
                    src0_ddf_i -= (row_low % ne01)*ne00;
                    dst_ddf_i  -= (row_low % ne0)*ne1;
                }

                // the main device memory buffer can be on VRAM scratch, with space for all partial results
                // in that case an offset on dst_ddf_i is needed
                if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
                    dst_ddf_i += i01_low; // offset is 0 if no tensor split
                }

                // copy src0, src1 to device if necessary
                if (use_src1 && !src1_stays_on_host) {
                    if (src1->backend == GGML_BACKEND_CPU) {
                        GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
                        int64_t nrows1 = flatten_rows ? nrows0 : ne11;
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
                    } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
                        if (id != g_main_device) {
                            GGML_ASSERT(!flatten_rows);
                            float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
                            src1_ddf_i_source += i11*src1_stride;
                            CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
                                                    cudaMemcpyDeviceToDevice, cudaStream_main));
                        }
                    } else if (src1_on_device && !src1_is_contiguous) {
                        GGML_ASSERT(!split);
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
                    } else {
                        GGML_ASSERT(false);
                    }
                }

Michael Yang's avatar
Michael Yang committed
5791
                if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
Michael Yang's avatar
Michael Yang committed
5792
                    if (src0_is_f32) {
Michael Yang's avatar
Michael Yang committed
5793
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
Michael Yang's avatar
Michael Yang committed
5794
                    } else {
Michael Yang's avatar
Michael Yang committed
5795
                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
Michael Yang's avatar
Michael Yang committed
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
                    }
                }

                // convert src0 to f32 if it is necessary for the ggml_cuda_op
                if (src0_needs_f32 && !src0_is_f32) {
                    to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
                    CUDA_CHECK(cudaGetLastError());
                }

                // do the computation
                op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
                CUDA_CHECK(cudaGetLastError());

                // copy dst to host or other device if necessary
                if (!dst_on_device) {
                    void * dst_off_device;
                    cudaMemcpyKind kind;
                    if (dst->backend == GGML_BACKEND_CPU) {
                        dst_off_device = dst->data;
                        kind = cudaMemcpyDeviceToHost;
                    } else if (dst->backend == GGML_BACKEND_GPU) {
                        dst_off_device = dst_extra->data_device[g_main_device];
                        kind = cudaMemcpyDeviceToDevice;
                    } else {
                        GGML_ASSERT(false);
                    }
                    if (split) {
                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
                        // dst is NOT transposed.
Michael Yang's avatar
Michael Yang committed
5825
                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
Michael Yang's avatar
Michael Yang committed
5826
5827
                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
Michael Yang's avatar
Michael Yang committed
5828
5829
5830
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3);
                        CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float),
                                                     i01_diff*sizeof(float), ne1, kind, cudaStream_main));
Michael Yang's avatar
Michael Yang committed
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
                    } else {
                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
                    }
                }

                // signify to main device that other device is done
                if (split && g_device_count > 1 && id != g_main_device) {
                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
                }
            }
        }
    }

    // wait until each device is finished, then free their buffers
    for (int id = 0; id < g_device_count; ++id) {
        if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
            continue;
        }

        CUDA_CHECK(cudaSetDevice(id));

        if (src0_asq[id] > 0) {
            ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
        }
        if (src0_asf[id] > 0) {
            ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
        }
        if (src1_asf[id] > 0) {
            ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
        }
        if (dst_asf[id] > 0) {
            ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
        }
    }

    // main device waits for all other devices to be finished
    if (split && g_device_count > 1) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        for (int id = 0; id < g_device_count; ++id) {
5871
            if (id != g_main_device && src0_extra->events[id]) {
Michael Yang's avatar
Michael Yang committed
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
                CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
            }
        }
    }

    if (dst->backend == GGML_BACKEND_CPU) {
        CUDA_CHECK(cudaSetDevice(g_main_device));
        CUDA_CHECK(cudaDeviceSynchronize());
    }
}

void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
    // Due to flatten_rows == true this does in practice not make a difference however.
    // Better solution would be nice but right now that would require disproportionate changes.
    GGML_ASSERT(
        (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
        src1->type == GGML_TYPE_F32 &&
        (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
}

void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
}

5899
5900
5901
5902
5903
void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
}

Michael Yang's avatar
Michael Yang committed
5904
5905
5906
5907
5908
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
}

5909
5910
5911
5912
5913
void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
}

Michael Yang's avatar
Michael Yang committed
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
}

bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    // TODO: find the optimal values for these
    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
        src1->type == GGML_TYPE_F32 &&
        dst->type == GGML_TYPE_F32 &&
        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
        return true;
    }

    return false;
}

void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

Michael Yang's avatar
Michael Yang committed
5948
5949
    const int64_t ne12 = src1->ne[2];

Michael Yang's avatar
Michael Yang committed
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    void * src0_ddq = src0_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];

Michael Yang's avatar
Michael Yang committed
5962
    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
}

void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
    GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
    GGML_ASSERT(!ggml_is_permuted(src0));
    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
    GGML_ASSERT(src0->type == GGML_TYPE_F16);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];

Michael Yang's avatar
Michael Yang committed
5976
5977
    const int64_t ne12 = src1->ne[2];

Michael Yang's avatar
Michael Yang committed
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];

    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    void * src0_ddq = src0_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];

    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];

    const int row_stride_x = nb01 / sizeof(half);
    const int channel_stride_x = nb02 / sizeof(half);

Michael Yang's avatar
Michael Yang committed
5996
    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
Michael Yang's avatar
Michael Yang committed
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
}

void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
        src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;

    if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
        ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
    } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
        ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
    }else if (src0->type == GGML_TYPE_F32) {
        ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
    } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
        if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
            ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
        } else {
Michael Yang's avatar
Michael Yang committed
6013
6014
            int min_compute_capability = INT_MAX;
            for (int id = 0; id < g_device_count; ++id) {
6015
6016
                if (min_compute_capability > g_compute_capabilities[id]
                        && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
Michael Yang's avatar
Michael Yang committed
6017
6018
6019
6020
6021
6022
6023
6024
6025
                    min_compute_capability = g_compute_capabilities[id];
                }
            }

            if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) {
                ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false);
            } else {
                ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
            }
Michael Yang's avatar
Michael Yang committed
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
        }
    } else {
        GGML_ASSERT(false);
    }
}

void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
}

void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    const int64_t ne = ggml_nelements(src0);
    GGML_ASSERT(ne == ggml_nelements(src1));

    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
    GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);

    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);

    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    GGML_ASSERT(src0->ne[3] == 1);

    const int64_t nb00 = src0->nb[0];
    const int64_t nb01 = src0->nb[1];
    const int64_t nb02 = src0->nb[2];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    GGML_ASSERT(src1->ne[3] == 1);

    const int64_t nb10 = src1->nb[0];
    const int64_t nb11 = src1->nb[1];
    const int64_t nb12 = src1->nb[2];

    CUDA_CHECK(cudaSetDevice(g_main_device));
    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];

    const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
    const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;

    char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
    char * src1_ddc = (char *) src1_extra->data_device[g_main_device];

    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
        ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
        ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
    } else {
        GGML_ASSERT(false);
    }

    (void) dst;
}

6085
6086
6087
6088
6089
void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    ggml_cuda_cpy(src0, dst, nullptr);
    (void) src1;
}

Michael Yang's avatar
Michael Yang committed
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
}

void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
}

void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
Michael Yang's avatar
Michael Yang committed
6102
6103
6104
6105

    const int mode = ((int32_t *) dst->op_params)[2];
    const bool is_glm = mode & 4;
    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
Michael Yang's avatar
Michael Yang committed
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
}

void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    (void) src0;
    (void) src1;
    (void) dst;
}

void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
    int nrows = ggml_nrows(tensor);

    const int64_t ne0 = tensor->ne[0];

    const size_t nb1 = tensor->nb[1];

    ggml_backend backend = tensor->backend;
    struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
    memset(extra, 0, sizeof(*extra));

    for (int id = 0; id < g_device_count; ++id) {
        if (backend == GGML_BACKEND_GPU && id != g_main_device) {
            continue;
        }

        cudaSetDevice(id);

        int row_low, row_high;
        if (backend == GGML_BACKEND_GPU) {
            row_low = 0;
            row_high = nrows;
        } else if (backend == GGML_BACKEND_GPU_SPLIT) {
6137
6138
            const int64_t rounding = get_row_rounding(tensor->type);

Michael Yang's avatar
Michael Yang committed
6139
            row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
6140
            row_low -= row_low % rounding;
Michael Yang's avatar
Michael Yang committed
6141

Michael Yang's avatar
Michael Yang committed
6142
6143
6144
6145
            if (id == g_device_count - 1) {
                row_high = nrows;
            } else {
                row_high = nrows*g_tensor_split[id + 1];
6146
                row_high -= row_high % rounding;
Michael Yang's avatar
Michael Yang committed
6147
            }
Michael Yang's avatar
Michael Yang committed
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
        } else {
            GGML_ASSERT(false);
        }
        if (row_low == row_high) {
            continue;
        }

        int64_t nrows_split = row_high - row_low;

        const size_t offset_split = row_low*nb1;
        size_t size = ggml_nbytes_split(tensor, nrows_split);
        const size_t original_size = size;

Michael Yang's avatar
Michael Yang committed
6161
        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
Michael Yang's avatar
Michael Yang committed
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
        if (ne0 % MATRIX_ROW_PADDING != 0) {
            size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
                * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
        }

        char * buf;
        CUDA_CHECK(cudaMalloc(&buf, size));
        char * buf_host = (char*)data + offset_split;

        // set padding to 0 to avoid possible NaN values
        if (size > original_size) {
            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
        }


Michael Yang's avatar
Michael Yang committed
6177
        CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
Michael Yang's avatar
Michael Yang committed
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210

        extra->data_device[id] = buf;

        if (backend == GGML_BACKEND_GPU_SPLIT) {
            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
        }
    }

    tensor->extra = extra;
}

void ggml_cuda_free_data(struct ggml_tensor * tensor) {
    if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
        return;
    }

    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;

    for (int id = 0; id < g_device_count; ++id) {
        if (extra->data_device[id] != nullptr) {
            CUDA_CHECK(cudaSetDevice(id));
            CUDA_CHECK(cudaFree(extra->data_device[id]));
        }

        if (extra->events[id] != nullptr) {
            CUDA_CHECK(cudaSetDevice(id));
            CUDA_CHECK(cudaEventDestroy(extra->events[id]));
        }
    }

    delete extra;
}

6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
static size_t g_temp_tensor_extra_index = 0;

static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
    if (g_temp_tensor_extras == nullptr) {
        g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
    }

    size_t alloc_index = g_temp_tensor_extra_index;
    g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
    struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
    memset(extra, 0, sizeof(*extra));

    return extra;
}

Michael Yang's avatar
Michael Yang committed
6227
6228
6229
6230
6231
6232
6233
6234
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
    if (scratch && g_scratch_size == 0) {
        return;
    }

    // recursively assign CUDA buffers until a compute tensor is found
    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
        const ggml_op src0_op = tensor->src[0]->op;
6235
        if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
Michael Yang's avatar
Michael Yang committed
6236
6237
6238
6239
6240
6241
6242
6243
            ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
        }
    }
    if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
        ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
    }

    tensor->backend = GGML_BACKEND_GPU;
6244
    struct ggml_tensor_extra_gpu * extra;
Michael Yang's avatar
Michael Yang committed
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256

    const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
        tensor->op == GGML_OP_VIEW ||
        force_inplace;
    const size_t size = ggml_nbytes(tensor);

    CUDA_CHECK(cudaSetDevice(g_main_device));
    if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
        struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
        char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
        size_t offset = 0;
        if (tensor->op == GGML_OP_VIEW) {
Michael Yang's avatar
Michael Yang committed
6257
            memcpy(&offset, tensor->op_params, sizeof(size_t));
Michael Yang's avatar
Michael Yang committed
6258
        }
6259
        extra = ggml_cuda_alloc_temp_tensor_extra();
Michael Yang's avatar
Michael Yang committed
6260
6261
6262
6263
        extra->data_device[g_main_device] = src0_ddc + offset;
    } else if (tensor->op == GGML_OP_CPY) {
        struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
        void * src1_ddv = src1_extra->data_device[g_main_device];
6264
        extra = ggml_cuda_alloc_temp_tensor_extra();
Michael Yang's avatar
Michael Yang committed
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
        extra->data_device[g_main_device] = src1_ddv;
    } else if (scratch) {
        GGML_ASSERT(size <= g_scratch_size);
        if (g_scratch_offset + size > g_scratch_size) {
            g_scratch_offset = 0;
        }

        char * data = (char *) g_scratch_buffer;
        if (data == nullptr) {
            CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
            g_scratch_buffer = data;
        }
6277
        extra = ggml_cuda_alloc_temp_tensor_extra();
Michael Yang's avatar
Michael Yang committed
6278
6279
6280
6281
6282
6283
6284
6285
6286
        extra->data_device[g_main_device] = data + g_scratch_offset;

        g_scratch_offset += size;

        GGML_ASSERT(g_scratch_offset <= g_scratch_size);
    } else { // allocate new buffers outside of scratch
        void * data;
        CUDA_CHECK(cudaMalloc(&data, size));
        CUDA_CHECK(cudaMemset(data, 0, size));
6287
6288
        extra = new ggml_tensor_extra_gpu;
        memset(extra, 0, sizeof(*extra));
Michael Yang's avatar
Michael Yang committed
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
        extra->data_device[g_main_device] = data;
    }

    tensor->extra = extra;
}

void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, true, false);
}

void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, false, false);
}

void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
    ggml_cuda_assign_buffers_impl(tensor, false, true);
}

void ggml_cuda_set_main_device(int main_device) {
    if (main_device >= g_device_count) {
        fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
                main_device, g_device_count, g_main_device);
        return;
    }
    g_main_device = main_device;
    if (g_device_count > 1) {
        cudaDeviceProp prop;
        CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
        fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
    }
}

Michael Yang's avatar
Michael Yang committed
6321
6322
6323
6324
void ggml_cuda_set_mul_mat_q(bool mul_mat_q) {
    g_mul_mat_q = mul_mat_q;
}

Michael Yang's avatar
Michael Yang committed
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
void ggml_cuda_set_scratch_size(size_t scratch_size) {
    g_scratch_size = scratch_size;
}

void ggml_cuda_free_scratch() {
    if (g_scratch_buffer == nullptr) {
        return;
    }

    CUDA_CHECK(cudaFree(g_scratch_buffer));
    g_scratch_buffer = nullptr;
}

bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
    ggml_cuda_func_t func;
    const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);

    switch (tensor->op) {
6345
6346
6347
6348
6349
6350
        case GGML_OP_DUP:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_dup;
            break;
Michael Yang's avatar
Michael Yang committed
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
        case GGML_OP_ADD:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_add;
            break;
        case GGML_OP_MUL:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_mul;
            break;
Michael Yang's avatar
Michael Yang committed
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
        case GGML_OP_UNARY:
            switch (ggml_get_unary_op(tensor)) {
                case GGML_UNARY_OP_GELU:
                    if (!any_on_device) {
                        return false;
                    }
                    func = ggml_cuda_gelu;
                    break;
                case GGML_UNARY_OP_SILU:
                    if (!any_on_device) {
                        return false;
                    }
                    func = ggml_cuda_silu;
                    break;
                default:
                    return false;
            } break;
6380
6381
6382
6383
6384
6385
        case GGML_OP_NORM:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_norm;
            break;
Michael Yang's avatar
Michael Yang committed
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
        case GGML_OP_RMS_NORM:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_rms_norm;
            break;
        case GGML_OP_MUL_MAT:
            if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
                return false;
            }
            func = ggml_cuda_mul_mat;
            break;
        case GGML_OP_SCALE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_scale;
            break;
        case GGML_OP_CPY:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_cpy;
            break;
6410
6411
6412
6413
6414
6415
        case GGML_OP_CONT:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_dup;
            break;
Michael Yang's avatar
Michael Yang committed
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
        case GGML_OP_RESHAPE:
        case GGML_OP_VIEW:
        case GGML_OP_PERMUTE:
        case GGML_OP_TRANSPOSE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_nop;
            break;
        case GGML_OP_DIAG_MASK_INF:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_diag_mask_inf;
            break;
        case GGML_OP_SOFT_MAX:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_soft_max;
            break;
        case GGML_OP_ROPE:
            if (!any_on_device) {
                return false;
            }
            func = ggml_cuda_rope;
            break;
        default:
            return false;
    }

    if (params->ith != 0) {
        return true;
    }
    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
        return true;
    }
    func(tensor->src[0], tensor->src[1], tensor);
    return true;
}