runner.go 23.3 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
Jesse Gross's avatar
Jesse Gross committed
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
Jesse Gross's avatar
Jesse Gross committed
10
	"image"
11
12
13
14
15
16
17
18
19
20
21
22
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
23
	"unicode/utf8"
24

25
26
	"golang.org/x/sync/semaphore"

27
	"github.com/ollama/ollama/api"
28
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
29
30
31
32
33
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
34
35
)

Jesse Gross's avatar
Jesse Gross committed
36
// input is an element of the prompt to process, either a token or an image
37
type input struct {
Jesse Gross's avatar
Jesse Gross committed
38
	token int32
39

Jesse Gross's avatar
Jesse Gross committed
40
	image image.Image
41
42
43
44
45
46
47
48
49
}

type Sequence struct {
	// batch index
	iBatch int

	// prompt inputs left to evaluate
	inputs []input

Jesse Gross's avatar
Jesse Gross committed
50
	// inputs that have been added to a batch but not yet submitted to Forward
51
52
	pendingInputs []input

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

68
69
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
70
71
72
73
74
75
76
77

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
78
	numKeep int32
79
80
81
82
83
84
85
86
87

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
88
	numPredicted        int
89
90
91
92
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
93
94
95
	numPredict int
	stop       []string
	numKeep    int32
96
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
97
	embedding  bool
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
}

func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
	s.ready.Wait()

	startTime := time.Now()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
113
		params.numKeep = int32(len(inputs))
114
115
	}

116
117
118
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
119
120
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
121
		newInputs := inputs[:params.numKeep]
122
123
124
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
125
		inputs = newInputs
126
127
	}

Jesse Gross's avatar
Jesse Gross committed
128
	// TODO(jessegross): Ingest cached history for grammar
129
130
131
132
133
134
135
136
137
138

	return &Sequence{
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
139
		sampler:             params.sampler,
140
141
142
143
144
145
146
147
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
148
// decoding images
149
150
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
	var inputs []input
151
152
153
	var parts []string
	var matches [][]string

Jesse Gross's avatar
Jesse Gross committed
154
155
156
157
158
159
160
	// TODO(jessegross): This can sometimes trigger for matching text in the
	// user's prompt. We previously tried to avoid it by only looking for images
	// on image models. We don't have a clear indication now but it would be better
	// to properly escape it in any case.
	re := regexp.MustCompile(`\[img-(\d+)\]`)
	parts = re.Split(prompt, -1)
	matches = re.FindAllStringSubmatch(prompt, -1)
161
162
163

	for i, part := range parts {
		// text - tokenize
Jesse Gross's avatar
Jesse Gross committed
164
		tokens, err := s.model.(model.TextProcessor).Encode(part)
165
166
167
		if err != nil {
			return nil, err
		}
168

169
170
		for _, t := range tokens {
			inputs = append(inputs, input{token: t})
171
172
		}

Jesse Gross's avatar
Jesse Gross committed
173
		// image - decode and store
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

Jesse Gross's avatar
Jesse Gross committed
189
			image, _, err := image.Decode(bytes.NewReader(images[imageIndex].Data))
Jesse Gross's avatar
Jesse Gross committed
190
191
192
193
			if err != nil {
				return nil, err
			}

Jesse Gross's avatar
Jesse Gross committed
194
			inputs = append(inputs, input{image: image})
195
196
197
198
199
200
201
		}
	}

	return inputs, nil
}

type Server struct {
202
203
204
205
206
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
207
	model model.Model
208

209
210
211
212
213
214
215
216
217
218
	// status for external health reporting - loading, ready to serve, etc.
	status ServerStatus

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
219
	// TODO (jmorganca): make this n_batch
220
221
	batchSize int

222
223
224
225
226
227
228
229
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
230
231
	seqs []*Sequence

232
233
234
235
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
	// KV cache
	cache *InputCache

	// next sequence for prompt processing to avoid starvation
	nextSeq int
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
253
254
255
256
257
258
259
260
261
262
263
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
264
265
	}

266
267
268
269
270
271
272
273
274
275
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
276
277
278
279
280
281
282
283
284
285
286
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
287
	s.seqsSem.Release(1)
288
289
290
291
292
293
294
295
296
297
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

	for {
		select {
		case <-ctx.Done():
			return
		default:
Jesse Gross's avatar
Jesse Gross committed
298
			err := s.processBatch()
299
300
301
			if err != nil {
				panic(err)
			}
302
303
304
305
		}
	}
}

Jesse Gross's avatar
Jesse Gross committed
306
func (s *Server) processBatch() error {
307
308
309
310
311
312
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

Jesse Gross's avatar
Jesse Gross committed
313
314
	var options model.Options
	imgSeq := -1
315
316
317
318
319
320
321
322
323
324
325

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
326
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
327
328
329
330
			s.removeSequence(seqIdx, "limit")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
331
332
333
334
335
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
			seq.cache.Inputs = []input{}
		}

336
		for i, input := range seq.inputs {
Jesse Gross's avatar
Jesse Gross committed
337
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
338
339
340
341
342
				if len(seq.pendingInputs) == 0 {
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
						return err
					}
343
344
345
346
347
				} else {
					break
				}
			}

Jesse Gross's avatar
Jesse Gross committed
348
			if i >= s.batchSize {
349
350
351
				break
			}

Jesse Gross's avatar
Jesse Gross committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
			// TODO(jessegross): Image inputs need to be rethought - it's
			// it doesn't work well for different types of models or multiple sequences
			if input.image != nil {
				if len(seq.pendingInputs) != len(options.Images) {
					break
				}

				if imgSeq != seqIdx && imgSeq != -1 {
					s.nextSeq = seqIdx
					break
				}

				imgSeq = seqIdx
				options.Images = append(options.Images, input.image)
				seq.pendingInputs = append(seq.pendingInputs, input)
				continue
368
369
			}

Jesse Gross's avatar
Jesse Gross committed
370
371
372
373
374
375
376
377
			options.Inputs = append(options.Inputs, input.token)
			options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			options.Sequences = append(options.Sequences, seq.cache.Id)

			seq.iBatch = len(options.Outputs)
			if i+1 == len(seq.inputs) {
				options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
			}
378
			seq.pendingInputs = append(seq.pendingInputs, input)
379
		}
380
381

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
382
383
	}

Jesse Gross's avatar
Jesse Gross committed
384
	if len(options.Inputs) == 0 {
385
		return nil
386
387
	}

Jesse Gross's avatar
Jesse Gross committed
388
389
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()
390

Jesse Gross's avatar
Jesse Gross committed
391
	modelOutput, err := model.Forward(ctx, s.model, options)
392
	if err != nil {
393
		return fmt.Errorf("failed to decode batch: %w", err)
394
395
	}

396
	logits := modelOutput.Floats()
397

398
399
400
401
402
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
403
		// After calling Forward, pending inputs are now in the cache
404
405
406
407
408
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
			seq.pendingInputs = []input{}
		}

409
410
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
411
412
413
			if !s.cache.enabled {
				return errors.New("caching disabled but unable to fit entire input in a batch")
			}
414
415
416
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
417
418
		seq.numPredicted++
		if seq.numPredicted == 1 {
419
420
421
422
423
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
424
			// TODO(jessegross): Embedding support
425
426
427
428
429
			s.removeSequence(i, "")
			continue
		}

		// sample a token
430
431
432
		vocabSize := len(logits) / len(options.Outputs)

		token, err := seq.sampler.Sample(logits[seq.iBatch*vocabSize : (seq.iBatch+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
433
		if err != nil {
434
			return fmt.Errorf("failed to sample token: %w", err)
Jesse Gross's avatar
Jesse Gross committed
435
		}
436
437

		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
438
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
439
440
441
442
443
444
445
446
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
447
448
449
450
451
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
			return err
		}

452
453
454
455
456
		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
457
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
458
459
460
461
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
462
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
478
479
480
481
482

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
483
		if common.ContainsStopSuffix(sequence, seq.stop) {
484
485
486
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
487
		if common.IncompleteUnicode(sequence) {
488
489
490
491
492
493
494
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
495
496

	return nil
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
}

// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
	api.Runner

	NumKeep          int      `json:"n_keep"`
	Seed             int      `json:"seed"`
	NumPredict       int      `json:"n_predict"`
	TopK             int      `json:"top_k"`
	TopP             float32  `json:"top_p"`
	MinP             float32  `json:"min_p"`
	TypicalP         float32  `json:"typical_p"`
	RepeatLastN      int      `json:"repeat_last_n"`
	Temperature      float32  `json:"temperature"`
	RepeatPenalty    float32  `json:"repeat_penalty"`
	PresencePenalty  float32  `json:"presence_penalty"`
	FrequencyPenalty float32  `json:"frequency_penalty"`
	Mirostat         int      `json:"mirostat"`
	MirostatTau      float32  `json:"mirostat_tau"`
	MirostatEta      float32  `json:"mirostat_eta"`
	Stop             []string `json:"stop"`
}

type ImageData struct {
524
525
526
	Data          []byte `json:"data"`
	ID            int    `json:"id"`
	AspectRatioID int    `json:"aspect_ratio_id"`
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
}

type CompletionRequest struct {
	Prompt      string      `json:"prompt"`
	Images      []ImageData `json:"image_data"`
	Grammar     string      `json:"grammar"`
	CachePrompt bool        `json:"cache_prompt"`

	Options
}

type Timings struct {
	PredictedN  int     `json:"predicted_n"`
	PredictedMS float64 `json:"predicted_ms"`
	PromptN     int     `json:"prompt_n"`
	PromptMS    float64 `json:"prompt_ms"`
}

type CompletionResponse struct {
	Content string `json:"content"`
	Stop    bool   `json:"stop"`

	Model        string  `json:"model,omitempty"`
	Prompt       string  `json:"prompt,omitempty"`
	StoppedLimit bool    `json:"stopped_limit,omitempty"`
	PredictedN   int     `json:"predicted_n,omitempty"`
	PredictedMS  float64 `json:"predicted_ms,omitempty"`
	PromptN      int     `json:"prompt_n,omitempty"`
	PromptMS     float64 `json:"prompt_ms,omitempty"`

	Timings Timings `json:"timings"`
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
	var req CompletionRequest
	req.Options = Options(api.DefaultOptions())
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
Jesse Gross's avatar
Jesse Gross committed
579
580
581
		numPredict: req.NumPredict,
		stop:       req.Stop,
		numKeep:    int32(req.NumKeep),
582
		sampler:    sample.Greedy(), // TODO: add support for different samplers when performance is optimized
Jesse Gross's avatar
Jesse Gross committed
583
		embedding:  false,
584
585
586
587
588
589
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

590
	// Ensure there is a place to put the sequence, released when removed from s.seqs
591
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
592
593
594
595
596
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
597
598
599
		return
	}

600
	s.mu.Lock()
601
	found := false
602
603
	for i, sq := range s.seqs {
		if sq == nil {
604
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
605
606
607
608
609
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
610

611
612
			s.seqs[i] = seq
			s.cond.Signal()
613
			found = true
614
615
616
617
618
			break
		}
	}
	s.mu.Unlock()

619
620
621
622
623
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Stop:         true,
					StoppedLimit: seq.doneReason == "limit",
					Timings: Timings{
						PromptN:     seq.numPromptInputs,
						PromptMS:    float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
Jesse Gross's avatar
Jesse Gross committed
648
						PredictedN:  seq.numPredicted,
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
						PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
					},
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

type EmbeddingRequest struct {
	Content     string `json:"content"`
	CachePrompt bool   `json:"cache_prompt"`
}

type EmbeddingResponse struct {
	Embedding []float32 `json:"embedding"`
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	var req EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	slog.Debug("embedding request", "content", req.Content)

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

687
	// Ensure there is a place to put the sequence, released when removed from s.seqs
688
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
689
690
691
692
693
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embeddings request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
694
695
696
		return
	}

697
	s.mu.Lock()
698
	found := false
699
700
	for i, sq := range s.seqs {
		if sq == nil {
701
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
702
703
704
705
706
707
708
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
709
			found = true
710
711
712
713
714
			break
		}
	}
	s.mu.Unlock()

715
716
717
718
719
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
	embedding := <-seq.embedding

	if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

type HealthResponse struct {
	Status   string  `json:"status"`
	Progress float32 `json:"progress"`
}

type ServerStatus int

const (
	ServerStatusReady ServerStatus = iota
	ServerStatusLoadingModel
	ServerStatusError
)

func (s ServerStatus) ToString() string {
	switch s {
	case ServerStatusReady:
		return "ok"
	case ServerStatusLoadingModel:
		return "loading model"
	default:
		return "server error"
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
	if err := json.NewEncoder(w).Encode(&HealthResponse{
		Status:   s.status.ToString(),
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

763
764
765
766
767
768
769
770
771
772
773
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

774
775
func (s *Server) loadModel(
	mpath string,
776
	params ml.BackendParams,
777
	lpath multiLPath,
Jesse Gross's avatar
Jesse Gross committed
778
	parallel int,
779
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
780
	kvSize int,
781
782
	multiUserCache bool,
) {
783
	var err error
784
	s.model, err = model.New(mpath, params)
785
786
787
	if err != nil {
		panic(err)
	}
788

789
	slog.Info("system", "info", s.model.Backend().SystemInfo(), "threads", params.NumThreads)
790

Jesse Gross's avatar
Jesse Gross committed
791
	// TODO(jessegross): LoRA loading
792
	if lpath.String() != "" {
Jesse Gross's avatar
Jesse Gross committed
793
		panic("loras are not yet implemented")
794
795
	}

Jesse Gross's avatar
Jesse Gross committed
796
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
797
798
799
	if err != nil {
		panic(err)
	}
800

Jesse Gross's avatar
Jesse Gross committed
801
802
803
804
805
806
807
808
809
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

810
811
812
813
	s.status = ServerStatusReady
	s.ready.Done()
}

814
815
816
817
818
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
819
820
	numGPULayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGPU := fs.Int("main-gpu", 0, "Main GPU")
821
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
822
823
824
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
825
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
826
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
Jesse Gross's avatar
Jesse Gross committed
827
828
	_ = fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	_ = fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
829
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
830
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
831

832
	var lpaths multiLPath
833
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
834

835
836
837
838
839
840
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
Jesse Gross's avatar
Jesse Gross committed
858
	slog.Info("starting ollama engine")
859
860
861
862
863
864

	server := &Server{
		batchSize: *batchSize,
		status:    ServerStatusLoadingModel,
	}

Jesse Gross's avatar
Jesse Gross committed
865
866
867
868
	// TODO(jessegross): Parameters that need to be implemented:
	//	no-mmap
	//	mlock

869
	var tensorSplitFloats []float32
870
	if *tensorSplit != "" {
871
872
873
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
874
			f, _ := strconv.ParseFloat(s, 32)
875
			tensorSplitFloats[i] = float32(f)
876
		}
877
878
879
	}

	params := ml.BackendParams{
880
881
882
883
884
		NumThreads:     *threads,
		NumGPULayers:   *numGPULayers,
		MainGPU:        *mainGPU,
		TensorSplit:    tensorSplitFloats,
		FlashAttention: *flashAttention,
885
	}
886
887

	server.ready.Add(1)
888
	go server.loadModel(*mpath, params, lpaths, *parallel, *kvCacheType, *kvSize, *multiUserCache)
889
890
891
892

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
893
894
	defer cancel()

895
896
897
898
899
900
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
901
		return err
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
	}
	defer listener.Close()

	mux := http.NewServeMux()
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
917
		return err
918
919
	}

920
	return nil
921
}