backend.go 7.13 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
package ml

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"os"
	"strconv"
	"strings"
)

type Config interface {
	Architecture() string
	String(string, ...string) string
	Uint(string, ...uint32) uint32
	Float(string, ...float32) float32
17
	Bool(string, ...bool) bool
Michael Yang's avatar
Michael Yang committed
18
19
20
21
22
23
24
25
26

	Strings(string, ...[]string) []string
	Uints(string, ...[]uint32) []uint32
}

type Backend interface {
	Config() Config
	Get(name string) Tensor
	NewContext() Context
27
	SystemInfo() string
Michael Yang's avatar
Michael Yang committed
28
29
}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// BackendCacheConfig should be implemented by backends that need special output
// from the cache to meet specific requirements. It is frequently implemented in
// conjunction with ScaledDotProductAttention.
type BackendCacheConfig interface {
	CacheConfig() CacheConfig
}

// CacheConfig controls optimizations (mostly backend-specific) that may transform
// the output the cache to work better with specific kernels.
type CacheConfig struct {
	// CachePadding specifies the multiple for the number of tokens of cache history
	// that will be returned from cache Get for k, v and mask. The capacity of the
	// cache itself will also be increased to a multiple of this size if needed.
	CachePadding int

	// PermutedV performs Permute(ctx, 1, 2, 0, 3) on v tensors stored via Put
	// and return the permuted version via Get. This uses the cache copy operation
	// to avoid a Contiguous call on the permuted tensor.
	PermutedV bool
49
50
51
52
53
54
55
56

	// MaskDType specifies the data type for generating the mask. If unset it will
	// default to DTypeF32.
	MaskDType DType

	// MaskBatchPadding specifies the multiple for the batch size dimension in the mask.
	// Any position that does not correspond to an actual token will be filled with -Inf.
	MaskBatchPadding int
57
58
}

59
60
61
62
// BackendParams controls how the backend loads and executes models
type BackendParams struct {
	// NumThreads sets the number of threads to use if running on the CPU
	NumThreads int
Michael Yang's avatar
Michael Yang committed
63

64
65
66
67
68
69
70
71
	// MainGPU is the index of the primary GPU to use
	MainGPU int

	// NumGPULayers is the number of layers to offload to GPUs
	NumGPULayers int

	// TensorSplit is the fraction of the model to offload to each GPU
	TensorSplit []float32
72
73
74

	// FlashAttention indicates that we should use a fused flash attention kernel
	FlashAttention bool
75
76
77
78
79
}

var backends = make(map[string]func(*os.File, BackendParams) (Backend, error))

func RegisterBackend(name string, f func(*os.File, BackendParams) (Backend, error)) {
Michael Yang's avatar
Michael Yang committed
80
81
82
83
84
85
86
	if _, ok := backends[name]; ok {
		panic("backend: backend already registered")
	}

	backends[name] = f
}

87
func NewBackend(f *os.File, params BackendParams) (Backend, error) {
Michael Yang's avatar
Michael Yang committed
88
	if backend, ok := backends["ggml"]; ok {
89
		return backend(f, params)
Michael Yang's avatar
Michael Yang committed
90
91
92
93
94
95
	}

	return nil, fmt.Errorf("unsupported backend")
}

type Context interface {
96
	Empty(dtype DType, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
97
98
99
100
	Zeros(dtype DType, shape ...int) Tensor
	FromFloatSlice(s []float32, shape ...int) (Tensor, error)
	FromIntSlice(s []int32, shape ...int) (Tensor, error)

101
	Forward(...Tensor) Context
102
	Compute(...Tensor)
Jesse Gross's avatar
Jesse Gross committed
103
	MaxTensors() int
104
	Close()
Michael Yang's avatar
Michael Yang committed
105
106
107
}

type Tensor interface {
108
109
	Dim(n int) int
	Stride(n int) int
Michael Yang's avatar
Michael Yang committed
110

111
	Shape() []int
Michael Yang's avatar
Michael Yang committed
112
113
114
115
116
117
118
119
	DType() DType

	Bytes() []byte
	Floats() []float32

	Add(ctx Context, t2 Tensor) Tensor
	Mul(ctx Context, t2 Tensor) Tensor
	Mulmat(ctx Context, t2 Tensor) Tensor
120
	MulmatFullPrec(ctx Context, t2 Tensor) Tensor
Michael Yang's avatar
Michael Yang committed
121
122
123
124
125
126
127
128
129
130
131
132
133

	Softmax(ctx Context) Tensor
	LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
	RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
	Scale(ctx Context, s float64) Tensor

	Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
	RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor

	Tanh(ctx Context) Tensor
	GELU(ctx Context) Tensor
	SILU(ctx Context) Tensor

134
	Reshape(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
135
136
137
138
	View(ctx Context, offset int, shape ...int) Tensor
	Permute(ctx Context, shape ...int) Tensor
	Contiguous(ctx Context) Tensor

139
140
	Pad(ctx Context, shape ...int) Tensor
	Unpad(ctx Context, shape ...int) Tensor
Michael Yang's avatar
Michael Yang committed
141
142
143
144
145
146
147

	Stack(ctx Context, dim int, s ...Tensor) Tensor
	Concat(ctx Context, t2 Tensor, dim int) Tensor
	Rows(ctx Context, t2 Tensor) Tensor
	Copy(ctx Context, t2 Tensor) Tensor
}

148
149
150
151
// ScaledDotProductAttention implements a fused attention
// operation equivalent to following code on a tensor named
// query:
//
152
153
154
155
// query = query.Permute(ctx, 0, 2, 1, 3)
// key = key.Permute(ctx, 0, 2, 1, 3)
// value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
//
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// kq := key.MulmatFullPrec(ctx, query)
//
// kq = kq.Scale(ctx, scale)
//
//	if mask != nil {
//		kq = kq.Add(ctx, mask)
//	}
//
// kq = kq.Softmax(ctx)
//
// kqv := value.Mulmat(ctx, kq)
// return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
type ScaledDotProductAttention interface {
	ScaledDotProductAttention(ctx Context, key, value, mask Tensor, scale float64) Tensor
}

Michael Yang's avatar
Michael Yang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
type number interface {
	~int | ~int8 | ~int16 | ~int32 | ~int64 |
		~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
		~float32 | ~float64 |
		~complex64 | ~complex128
}

func mul[T number](s ...T) T {
	p := T(1)
	for _, v := range s {
		p *= v
	}

	return p
}

type DumpOptions struct {
	// Items is the number of elements to print at the beginning and end of each dimension.
190
	Items int
Michael Yang's avatar
Michael Yang committed
191
192
193
194
195

	// Precision is the number of decimal places to print. Applies to float32 and float64.
	Precision int
}

Jesse Gross's avatar
Jesse Gross committed
196
func Dump(ctx Context, t Tensor, opts ...DumpOptions) string {
Michael Yang's avatar
Michael Yang committed
197
198
199
200
201
202
203
204
205
	if len(opts) < 1 {
		opts = append(opts, DumpOptions{
			Items:     3,
			Precision: 4,
		})
	}

	switch t.DType() {
	case DTypeF32:
Jesse Gross's avatar
Jesse Gross committed
206
207
208
209
		return dump[[]float32](ctx, t, opts[0].Items, func(f float32) string {
			return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
		})
	case DTypeF16:
210
		f32 := ctx.Empty(DTypeF32, t.Shape()...)
Jesse Gross's avatar
Jesse Gross committed
211
212
		f32 = t.Copy(ctx, f32)
		return dump[[]float32](ctx, f32, opts[0].Items, func(f float32) string {
Michael Yang's avatar
Michael Yang committed
213
214
215
			return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
		})
	case DTypeI32:
Jesse Gross's avatar
Jesse Gross committed
216
		return dump[[]int32](ctx, t, opts[0].Items, func(i int32) string {
Michael Yang's avatar
Michael Yang committed
217
218
219
220
221
222
223
			return strconv.FormatInt(int64(i), 10)
		})
	default:
		return "<unsupported>"
	}
}

Jesse Gross's avatar
Jesse Gross committed
224
225
func dump[S ~[]E, E number](ctx Context, t Tensor, items int, fn func(E) string) string {
	if t.Bytes() == nil {
226
		ctx.Forward(t).Compute(t)
Michael Yang's avatar
Michael Yang committed
227
228
229
230
231
232
233
234
235
236
	}

	s := make(S, mul(t.Shape()...))
	if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
		panic(err)
	}

	shape := t.Shape()

	var sb strings.Builder
237
238
	var f func([]int, int)
	f = func(dims []int, stride int) {
Michael Yang's avatar
Michael Yang committed
239
240
241
		prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
		fmt.Fprint(&sb, "[")
		defer func() { fmt.Fprint(&sb, "]") }()
242
		for i := 0; i < dims[0]; i++ {
Michael Yang's avatar
Michael Yang committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
			if i >= items && i < dims[0]-items {
				fmt.Fprint(&sb, "..., ")
				// skip to next printable element
				skip := dims[0] - 2*items
				if len(dims) > 1 {
					stride += mul(append(dims[1:], skip)...)
					fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
				}
				i += skip - 1
			} else if len(dims) > 1 {
				f(dims[1:], stride)
				stride += mul(dims[1:]...)
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
				}
			} else {
				fmt.Fprint(&sb, fn(s[stride+i]))
				if i < dims[0]-1 {
					fmt.Fprint(&sb, ", ")
				}
			}
		}
	}
	f(shape, 0)

	return sb.String()
}

type DType int

const (
Jesse Gross's avatar
Jesse Gross committed
274
275
276
	DTypeOther DType = iota
	DTypeF32
	DTypeF16
Michael Yang's avatar
Michael Yang committed
277
278
	DTypeI32
)