convert_llama_adapter.go 3.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
package convert

import (
	"cmp"
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

Michael Yang's avatar
Michael Yang committed
10
	"github.com/ollama/ollama/fs/ggml"
11
12
13
14
15
16
17
18
19
20
)

type llamaAdapter struct {
	AdapterParameters
	NumAttentionHeads uint32 `json:"num_attention_heads"`
	NumKeyValueHeads  uint32 `json:"num_key_value_heads"`
}

var _ AdapterConverter = (*llamaAdapter)(nil)

Michael Yang's avatar
Michael Yang committed
21
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
22
23
24
25
26
27
28
29
30
31
	kv := p.AdapterParameters.KV()
	kv["general.architecture"] = "llama"
	kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
	kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]

	p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)

	return kv
}

32
33
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
34
35
36
37
38
39
40
41
42
43
	for _, t := range ts {
		shape := t.Shape()
		if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
			(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
			shape[0], shape[1] = shape[1], shape[0]
			t.SetRepacker(p.repackAndTranspose)
		} else {
			t.SetRepacker(p.repack)
		}

44
		out = append(out, &ggml.Tensor{
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
			Name:     t.Name(),
			Kind:     t.Kind(),
			Shape:    shape,
			WriterTo: t,
		})
	}

	return out
}

func (p *llamaAdapter) Replacements() []string {
	return []string{
		"base_model.model.", "",
		"model.layers", "blk",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"mlp.gate_proj", "ffn_gate",
		"mlp.down_proj", "ffn_down",
		"mlp.up_proj", "ffn_up",
		"lora_A.weight", "weight.lora_a",
		"lora_B.weight", "weight.lora_b",
		"lora_a", "weight.lora_a",
		"lora_b", "weight.lora_b",
	}
}

func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
	dims := []int{int(shape[1]), int(shape[0])}

	var heads uint32
	if strings.HasSuffix(name, "attn_q.weight.lora_a") {
		heads = p.NumAttentionHeads
	} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
	} else {
		return data, nil
	}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))

	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}

func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
	dims := []int{int(shape[1]), int(shape[0])}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))

	var heads uint32
	if strings.HasSuffix(name, "attn_q.weight.lora_a") {
		heads = p.NumAttentionHeads
	} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
	}

	if heads > 0 {
		if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
			return nil, err
		}

		if err := n.T(0, 2, 1, 3); err != nil {
			return nil, err
		}

		if err := n.Reshape(dims...); err != nil {
			return nil, err
		}

		if err := n.Transpose(); err != nil {
			return nil, err
		}
	}

	if err := n.T(1, 0); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}