convert_llama4.go 5.45 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package convert

import (
	"slices"
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/fs/ggml"
)

type llama4Model struct {
	ModelParameters
	TextModel struct {
		llamaModel
		NumExpertsPerToken     uint32 `json:"num_experts_per_tok"`
		NumLocalExperts        uint32 `json:"num_local_experts"`
		InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
		UseQKNorm              bool   `json:"use_qk_norm"`
		IntermediateSizeMLP    uint32 `json:"intermediate_size_mlp"`
Michael Yang's avatar
Michael Yang committed
22
		AttentionChunkSize     uint32 `json:"attention_chunk_size"`
Michael Yang's avatar
llama4  
Michael Yang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
	} `json:"text_config"`
	VisionModel struct {
		NumHiddenLayers   uint32  `json:"num_hidden_layers"`
		HiddenSize        uint32  `json:"hidden_size"`
		IntermediateSize  uint32  `json:"intermediate_size"`
		NumAttentionHeads uint32  `json:"num_attention_heads"`
		ImageSize         uint32  `json:"image_size"`
		PatchSize         uint32  `json:"patch_size"`
		RopeTheta         float32 `json:"rope_theta"`
		NormEpsilon       float32 `json:"norm_eps"`
		PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
	} `json:"vision_config"`
}

// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
	kv := p.ModelParameters.KV(t)
	kv["general.architecture"] = "llama4"

	for k, v := range p.TextModel.KV(t) {
		if strings.HasPrefix(k, "llama.") {
			kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
		}
	}

Michael Yang's avatar
Michael Yang committed
48
49
	kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
	kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
Michael Yang's avatar
llama4  
Michael Yang committed
50
51
52
53
54

	kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
	kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
	kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
	kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
Michael Yang's avatar
Michael Yang committed
55
	kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
Michael Yang's avatar
llama4  
Michael Yang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

	kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
	kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
	kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
	kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
	kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
	kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
	kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
	kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
	kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
	return kv
}

// Replacements implements ModelConverter.
func (p *llama4Model) Replacements() []string {
	return append(
		p.TextModel.Replacements(),
		"language_model.", "",
		"vision_model", "v",
		"multi_modal_projector", "mm",
		"feed_forward.down_proj", "ffn_down",
		"feed_forward.up_proj", "ffn_up",
		"feed_forward.gate_proj", "ffn_gate",
		"feed_forward.", "ffn_",
		"shared_expert.down_proj", "down_shexp",
		"shared_expert.gate_proj", "gate_shexp",
		"shared_expert.up_proj", "up_shexp",
		"experts.down_proj", "down_exps.weight",
		"experts.gate_up_proj", "gate_up_exps.weight",
		"router", "gate_inp",
		"patch_embedding.linear", "patch_embedding",
	)
}

// Tensors implements ModelConverter.
91
92
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
Michael Yang's avatar
llama4  
Michael Yang committed
93
94
95
96

	var textTensors []Tensor
	for _, t := range ts {
		if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
97
			out = append(out, &ggml.Tensor{
Michael Yang's avatar
llama4  
Michael Yang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
			// gate and up projectors are fused
			// dims[1], dims[2] must be swapped
			// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
			halfDim := int(t.Shape()[2]) / 2

			newShape := slices.Clone(t.Shape())
			newShape[1], newShape[2] = newShape[2]/2, newShape[1]
			for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
				// clone tensor since we need separate repackers
				tt := t.Clone()
				tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
115
				out = append(out, &ggml.Tensor{
Michael Yang's avatar
llama4  
Michael Yang committed
116
117
118
119
120
121
122
123
124
125
126
127
					Name:     strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
					Kind:     tt.Kind(),
					Shape:    newShape,
					WriterTo: tt,
				})
			}
		} else if strings.Contains(t.Name(), "ffn_down_exps") {
			// dims[1], dims[2] must be swapped
			// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
			t.SetRepacker(p.repack())
			newShape := slices.Clone(t.Shape())
			newShape[1], newShape[2] = newShape[2], newShape[1]
128
			out = append(out, &ggml.Tensor{
Michael Yang's avatar
llama4  
Michael Yang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    newShape,
				WriterTo: t,
			})
		} else {
			textTensors = append(textTensors, t)
		}
	}

	p.TextModel.skipRepack = true
	out = append(out, p.TextModel.Tensors(textTensors)...)
	return out
}

func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
	return func(name string, data []float32, shape []uint64) ([]float32, error) {
		dims := make([]int, len(shape))
		for i, dim := range shape {
			dims[i] = int(dim)
		}

		var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
		t, err := t.Slice(slice...)
		if err != nil {
			return nil, err
		}

		if err := t.T(0, 2, 1); err != nil {
			return nil, err
		}

		t = tensor.Materialize(t)
		// flatten tensor so it can be return as a vector
		if err := t.Reshape(t.Shape().TotalSize()); err != nil {
			return nil, err
		}

		return native.VectorF32(t.(*tensor.Dense))
	}
}