convert_llama.go 6.28 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
package convert

import (
	"cmp"
	"fmt"
Michael Yang's avatar
Michael Yang committed
6
	"math"
Michael Yang's avatar
Michael Yang committed
7
8
9
10
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
Michael Yang's avatar
lint  
Michael Yang committed
11

Michael Yang's avatar
Michael Yang committed
12
	"github.com/ollama/ollama/fs/ggml"
Michael Yang's avatar
Michael Yang committed
13
14
)

15
16
type llamaModel struct {
	ModelParameters
Michael Yang's avatar
Michael Yang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	NLayer                uint32  `json:"n_layer"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	NCtx                  uint32  `json:"n_ctx"`
	HiddenSize            uint32  `json:"hidden_size"`
	NEmbd                 uint32  `json:"n_embd"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NInner                uint32  `json:"n_inner"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NHead                 uint32  `json:"n_head"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	RopeTheta             float32 `json:"rope_theta"`
	RopeScaling           struct {
Michael Yang's avatar
Michael Yang committed
31
32
33
34
35
36
		Type                          string  `json:"type"`
		RopeType                      string  `json:"rope_type"`
		Factor                        float32 `json:"factor"`
		LowFrequencyFactor            float32 `json:"low_freq_factor"`
		HighFrequencyFactor           float32 `json:"high_freq_factor"`
		OriginalMaxPositionEmbeddings uint32  `json:"original_max_position_embeddings"`
Michael Yang's avatar
Michael Yang committed
37
38

		factors ropeFactor
Michael Yang's avatar
Michael Yang committed
39
40
41
42
43
44
	} `json:"rope_scaling"`
	RMSNormEPS       float32 `json:"rms_norm_eps"`
	LayerNormEPS     float32 `json:"layer_norm_eps"`
	LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
	NormEpsilon      float32 `json:"norm_epsilon"`
	HeadDim          uint32  `json:"head_dim"`
Michael Yang's avatar
llama4  
Michael Yang committed
45
46

	skipRepack bool
Michael Yang's avatar
Michael Yang committed
47
48
}

49
var _ ModelConverter = (*llamaModel)(nil)
Michael Yang's avatar
Michael Yang committed
50

Michael Yang's avatar
Michael Yang committed
51
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
52
	kv := p.ModelParameters.KV(t)
Michael Yang's avatar
Michael Yang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
	kv["general.architecture"] = "llama"
	kv["llama.vocab_size"] = p.VocabSize

	kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
		kv["llama.context_length"] = contextLength
	}

	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
		kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
	}

	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
		kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
	}

	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
		kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
		kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
	}

Michael Yang's avatar
llama4  
Michael Yang committed
75
76
77
78
	if p.HeadDim > 0 {
		kv["llama.attention.head_dim"] = p.HeadDim
	}

Michael Yang's avatar
Michael Yang committed
79
80
81
82
83
84
85
	if p.RopeTheta > 0 {
		kv["llama.rope.freq_base"] = p.RopeTheta
	}

	if p.RopeScaling.Type == "linear" {
		kv["llama.rope.scaling.type"] = p.RopeScaling.Type
		kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
Michael Yang's avatar
Michael Yang committed
86
87
88
89
90
91
92
	} else if p.RopeScaling.RopeType == "llama3" {
		dim := p.HiddenSize / p.NumAttentionHeads
		for i := uint32(0); i < dim; i += 2 {
			factor := cmp.Or(p.RopeScaling.Factor, 8.0)
			factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
			factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)

Michael Yang's avatar
Michael Yang committed
93
			original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
Michael Yang's avatar
Michael Yang committed
94
95
96
97
98
99
100
101
102
103
104
105
106
			lambdaLow := float32(original) / factorLow
			lambdaHigh := float32(original) / factorHigh

			lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
			if lambda < float64(lambdaHigh) {
				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
			} else if lambda > float64(lambdaLow) {
				p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
			} else {
				smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
			}
		}
Michael Yang's avatar
Michael Yang committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
	}

	if p.NumKeyValueHeads > 0 {
		kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
	}

	if p.RMSNormEPS > 0 {
		kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
		kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	if p.HeadDim > 0 {
		kv["llama.attention.key_length"] = p.HeadDim
		kv["llama.attention.value_length"] = p.HeadDim
	}

	return kv
}

129
130
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
Michael Yang's avatar
Michael Yang committed
131
132

	if p.RopeScaling.factors != nil {
133
		out = append(out, &ggml.Tensor{
Michael Yang's avatar
Michael Yang committed
134
135
136
137
138
139
140
			Name:     "rope_freqs.weight",
			Kind:     0,
			Shape:    []uint64{uint64(len(p.RopeScaling.factors))},
			WriterTo: p.RopeScaling.factors,
		})
	}

Michael Yang's avatar
Michael Yang committed
141
	for _, t := range ts {
Michael Yang's avatar
llama4  
Michael Yang committed
142
143
144
145
		if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
			if !p.skipRepack {
				t.SetRepacker(p.repack)
			}
Michael Yang's avatar
Michael Yang committed
146
147
		}

148
		out = append(out, &ggml.Tensor{
Michael Yang's avatar
Michael Yang committed
149
			Name:     t.Name(),
Michael Yang's avatar
Michael Yang committed
150
151
152
153
154
155
156
157
158
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

159
func (p *llamaModel) Replacements() []string {
Michael Yang's avatar
Michael Yang committed
160
	return []string{
Michael Yang's avatar
Michael Yang committed
161
162
163
164
165
166
167
168
169
170
171
172
173
		"lm_head", "output",
		"model.embed_tokens", "token_embd",
		"model.norm", "output_norm",
		"model.layers", "blk",
		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"mlp.gate_proj", "ffn_gate",
		"mlp.down_proj", "ffn_down",
		"mlp.up_proj", "ffn_up",
		"post_attention_layernorm", "ffn_norm",
Michael Yang's avatar
Michael Yang committed
174
	}
Michael Yang's avatar
Michael Yang committed
175
176
}

177
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
Michael Yang's avatar
Michael Yang committed
178
179
180
181
182
183
	var dims []int
	for _, dim := range shape {
		dims = append(dims, int(dim))
	}

	var heads uint32
Michael Yang's avatar
Michael Yang committed
184
	if strings.HasSuffix(name, "attn_q.weight") {
Michael Yang's avatar
Michael Yang committed
185
		heads = p.NumAttentionHeads
Michael Yang's avatar
Michael Yang committed
186
	} else if strings.HasSuffix(name, "attn_k.weight") {
Michael Yang's avatar
Michael Yang committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
	} else {
		return nil, fmt.Errorf("unknown tensor for repack: %s", name)
	}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}