model.go 5.32 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package llama

import (
4
	"fmt"
Michael Yang's avatar
Michael Yang committed
5
	"math"
6
	"strings"
Michael Yang's avatar
Michael Yang committed
7

Jesse Gross's avatar
Jesse Gross committed
8
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
9
10
11
12
13
14
15
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
)

type Options struct {
	RopeFactors                      ml.Tensor `gguf:"rope_freqs.weight"`
16
	hiddenSize, numHeads, numKVHeads int
Michael Yang's avatar
Michael Yang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

func New(c ml.Config) (model.Model, error) {
34
35
36
37
	if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
		return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
	}

Jesse Gross's avatar
Jesse Gross committed
38
	m := Model{
Michael Yang's avatar
Michael Yang committed
39
40
41
42
43
44
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
45
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
46
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
47
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
48
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
49
50
51
52
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
53
54
55
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
Michael Yang's avatar
Michael Yang committed
56
57
58
59
60
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
Jesse Gross's avatar
Jesse Gross committed
61
62
63
64
65
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
66
67
68
69
70
71
72
73
74
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

Jesse Gross's avatar
Jesse Gross committed
75
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

90
	scaleFactor := 1.0 / math.Sqrt(float64(headDim))
91
	kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
Michael Yang's avatar
Michael Yang committed
92
93
94
95
96
	kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

Jesse Gross's avatar
Jesse Gross committed
97
98
99
100
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
}

Michael Yang's avatar
Michael Yang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

119
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
120
121
122
123
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
124
125
126
127
128
129
130
131

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
132
133
134
135
136
137
138
139
140
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
Jesse Gross's avatar
Jesse Gross committed
141
	inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
Michael Yang's avatar
Michael Yang committed
142
143
144
145
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
146
	positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
Michael Yang's avatar
Michael Yang committed
147
148
149
150
	if err != nil {
		return nil, err
	}

151
152
153
154
155
	outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
156
157
158
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
159
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
160

161
162
163
164
		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}
Michael Yang's avatar
Michael Yang committed
165

166
		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
167
168
	}

169
170
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
171
172
173
174
175
}

func init() {
	model.Register("llama", New)
}