model.go 7.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
package qwen3

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	eps                              float32
	ropeBase, ropeScale              float32

	keyLength, valueLength int

	numExperts, numExpertsUsed int
	normTopKProb               bool
}

func (o Options) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

type Attention struct {
	QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
	Query     *nn.Linear  `gguf:"attn_q"`
	KeyNorm   *nn.RMSNorm `gguf:"attn_k_norm"`
	Key       *nn.Linear  `gguf:"attn_k"`
	Value     *nn.Linear  `gguf:"attn_v"`
	Output    *nn.Linear  `gguf:"attn_output"`
}

func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
	key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)

	query = sa.QueryNorm.Forward(ctx, query, opts.eps)
	key = sa.KeyNorm.Forward(ctx, key, opts.eps)

	query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
	key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
	return sa.Output.Forward(ctx, attention)
}

type MLP interface {
	Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}

type sparse struct {
	Router *nn.Linear `gguf:"ffn_gate_inp"`
	Gate   ml.Tensor  `gguf:"ffn_gate_exps.weight"`
	Up     ml.Tensor  `gguf:"ffn_up_exps.weight"`
	Down   ml.Tensor  `gguf:"ffn_down_exps.weight"`
}

func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := mlp.Router.Forward(ctx, hiddenStates)

	routingWeights := routerLogits.Softmax(ctx)
	selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
	if opts.normTopKProb {
		routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
		routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
		routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
	}

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))

	upStates := mlp.Up.MulmatID(ctx, hiddenStates, selectedExperts)

	hiddenStates = mlp.Gate.MulmatID(ctx, hiddenStates, selectedExperts)
	hiddenStates = hiddenStates.SILU(ctx)
	hiddenStates = hiddenStates.Mul(ctx, upStates)

	experts := mlp.Down.MulmatID(ctx, hiddenStates, selectedExperts)
	experts = experts.Mul(ctx, routingWeights)

	nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
	}

	return nextStates
}

type dense struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
	return mlp.Down.Forward(ctx, hiddenStates)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	*Attention

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP
}

func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	residual := hiddenStates
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	Layers []Layer `gguf:"blk"`

	*Options
}

// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
159
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
160
161
162
163
164
165
166
167

	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)

	for i, layer := range m.Layers {
		m.Cache.SetLayer(i)

		var outputs ml.Tensor
		if i == len(m.Layers)-1 {
168
			outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
		}

		hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
}

var _ model.Model = (*Model)(nil)

func New(c fs.Config) (model.Model, error) {
	layers := make([]Layer, c.Uint("block_count"))
	for i := range layers {
		if c.String("general.architecture") == "qwen3moe" {
			layers[i].MLP = &sparse{}
		} else {
			layers[i].MLP = &dense{}
		}
	}

	m := Model{
		BytePairEncoding: model.NewBytePairEncoding(
			`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
		),
		Layers: layers,
		Options: &Options{
			hiddenSize:     int(c.Uint("embedding_length")),
			numHeads:       int(c.Uint("attention.head_count")),
			numKVHeads:     int(c.Uint("attention.head_count_kv")),
			keyLength:      int(c.Uint("attention.key_length")),
			valueLength:    int(c.Uint("attention.value_length")),
			eps:            c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:       c.Float("rope.freq_base"),
			ropeScale:      c.Float("rope.freq_scale", 1),
			numExperts:     int(c.Uint("expert_count")),
			numExpertsUsed: int(c.Uint("expert_used_count")),
			normTopKProb:   c.Bool("norm_top_k_prob", true),
		},
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)
	return &m, nil
}

func init() {
	model.Register("qwen3", New)
	model.Register("qwen3moe", New)
}