model_vision.go 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
package qwen25vl

import (
	"math"
	"slices"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
)

// We only support batch size of 1
var batchSize int = 1

func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
	x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
	x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
	return x2.Neg(ctx).Concat(ctx, x1, 0)
}

func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
	return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}

func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
	// Create a flat slice for the mask (all -inf initially to block all attention)
	flat := make([]float32, seqLength*seqLength)
	for i := range flat {
		flat[i] = float32(math.Inf(-1)) // Negative infinity to block attention
	}

	// Fill in the mask with zeros for tokens that CAN attend to each other
	for i := 1; i < len(bounds); i++ {
		start := bounds[i-1]
		end := bounds[i]

		// Enable attention within this sequence block by setting values to 0
		for row := start; row < end; row++ {
			for col := start; col < end; col++ {
				idx := row*seqLength + col
				flat[idx] = 0.0 // 0 allows attention, -inf blocks it
			}
		}
	}

46
47
	mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
	// Reshape to match [seqLength, seqLength, 1] for broadcasting
	mask = mask.Reshape(ctx, seqLength, seqLength, 1)

	return mask
}

type VisionSelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_out"`
}

func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
	key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
	value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)

	query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
	key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)

	// Scale factor for scaled dot-product attention
	scale := 1.0 / math.Sqrt(float64(opts.headDim))

	// Scaled dot-product attention
	query = query.Permute(ctx, 0, 2, 1, 3)
	key = key.Permute(ctx, 0, 2, 1, 3)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
	kq := key.MulmatFullPrec(ctx, query)
	kq = kq.Scale(ctx, scale)
	if mask != nil {
		kq = kq.Add(ctx, mask)
	}
	kq = kq.Softmax(ctx)
	kqv := value.Mulmat(ctx, kq)
	attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)

	return sa.Output.Forward(ctx, attention)
}

// VisionMLP implements the multi-layer perceptron
type VisionMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	// Using activation as specified in config (likely GELU or SiLU/Swish)
	gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
	upOutput := mlp.Up.Forward(ctx, hiddenStates)
	hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)

	return mlp.Down.Forward(ctx, hiddenStates)
}

type VisionEncoderLayer struct {
	Norm1         *nn.RMSNorm `gguf:"ln1"`
	SelfAttention *VisionSelfAttention
	Norm2         *nn.RMSNorm `gguf:"ln2"`
	MLP           *VisionMLP
}

func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	residual := hiddenStates
	hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, mask, opts)
	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

// VisionModelOptions contains configuration options
type VisionModelOptions struct {
	hiddenSize        int
	numHeads          int
	headDim           int
	patchSize         int
	numChannels       int
	eps               float32
	ropeTheta         float32
	spatialMergeSize  int
	windowSize        int
	fullAttnBlocks    []int32
	temporalPatchSize int
}

type PatchEmbedding struct {
	PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
	PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
}

func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	numPatches := pixelValues.Shape()[1]

	// Reshape the input tensor to match the expected dimensions
	pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)

	// Permute the tensor to bring the temporal dimension to the front
	pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)

	// Split the tensor into parts for the temporal convolutions
	in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
	in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
	in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
	in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)

	s0, s1 := opts.patchSize, opts.patchSize // Use full stride
	p0, p1 := 0, 0                           // padding
	d0, d1 := 1, 1                           // dilation
	out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
	out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)

	// Add the outputs from the two temporal convolutions
	out := out0.Add(ctx, out1)

	// Reshape the output tensor to match the expected dimensions
	return out.Reshape(ctx, opts.hiddenSize, numPatches)
}

// VisionPatchMerger implements patch merging for the Qwen vision model
type VisionPatchMerger struct {
	LNQ  *nn.RMSNorm `gguf:"ln_q"`
	MLP0 *nn.Linear  `gguf:"mlp.0"`
	MLP2 *nn.Linear  `gguf:"mlp.2"`
}

// Forward computes patch merging for the vision model
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)

	hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)

	// Reshape the normalized output to view the hidden size dimension
	reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
	hidden := pm.MLP0.Forward(ctx, reshaped)
	activated := hidden.GELU(ctx)

	output := pm.MLP2.Forward(ctx, activated)

	return output
}

// VisionModel implements the Qwen vision model
type VisionModel struct {
	PatchEmbedding *PatchEmbedding
	Layers         []VisionEncoderLayer `gguf:"blk"`
	PatchMerger    *VisionPatchMerger   `gguf:"merger"`

	*VisionModelOptions
}

// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
	// Extract patch embeddings
	hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)

	positionEmbedding := m.PositionalEmbedding(ctx, grid)

	windowIndex, bounds := m.WindowIndex(ctx, grid)

	spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
	hiddenStates = hiddenStates.Rows(ctx, windowIndex)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)

	positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)*spatialMergeUnit, positionEmbedding.Dim(1)/spatialMergeUnit)
	positionEmbedding = positionEmbedding.Rows(ctx, windowIndex)
	positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)/spatialMergeUnit, positionEmbedding.Dim(1)*spatialMergeUnit)
	positionEmbedding = positionEmbedding.Concat(ctx, positionEmbedding, 0)

	cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
	cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
	sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))

	mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds, m.VisionModelOptions.numHeads)
	// Apply encoder layers
	for i, layer := range m.Layers {
		if slices.Contains(m.fullAttnBlocks, int32(i)) {
			hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, nil, m.VisionModelOptions)
		} else {
			hiddenStates = layer.Forward(
				ctx,
				hiddenStates,
				cos,
				sin,
				mask,
				m.VisionModelOptions,
			)
		}
	}

	hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
	reverseWindowIndex := windowIndex.Argsort(ctx)
	return hiddenStates.Rows(ctx, reverseWindowIndex)
}

// WindowIndex divides the grid into windows and returns:
//  1. A tensor containing flattened indices of all grid points organized by windows
//  2. A slice of boundaries that mark where each window's data begins and ends
//     in the flattened representation, scaled by spatialMergeSize squared
//
// The boundaries slice always starts with 0 and contains cumulative ending
// positions for each window, allowing downstream processing to identify
// window boundaries in the tensor data.
func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int) {
	vitMergerWindowSize := m.windowSize / m.spatialMergeSize / m.patchSize

	llmGridH := grid.Height / m.spatialMergeSize
	llmGridW := grid.Width / m.spatialMergeSize

	// Calculate window parameters
	numWindowsH := int(math.Ceil(float64(llmGridH) / float64(vitMergerWindowSize)))
	numWindowsW := int(math.Ceil(float64(llmGridW) / float64(vitMergerWindowSize)))

	// Initialize index_new slice
	var index []int32

	// Initialize bounds with the first element as 0
	bounds := []int{0}
	totalSeqLen := 0

	// Process each window without padding
	for wh := range numWindowsH {
		for ww := range numWindowsW {
			// Calculate window boundaries
			hStart := wh * vitMergerWindowSize
			wStart := ww * vitMergerWindowSize
			hEnd := min(hStart+vitMergerWindowSize, llmGridH)
			wEnd := min(wStart+vitMergerWindowSize, llmGridW)

			// Calculate sequence length for this window
			seqLen := (hEnd - hStart) * (wEnd - wStart)

			// Collect indices for this window
			for h := hStart; h < hEnd; h++ {
				for w := wStart; w < wEnd; w++ {
					index = append(index, int32(h*llmGridW+w))
				}
			}

			totalSeqLen += seqLen
			bounds = append(bounds, totalSeqLen*(m.spatialMergeSize*m.spatialMergeSize)+bounds[0])
		}
	}

303
	t := ctx.Input().FromIntSlice(index, len(index))
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

	return t, bounds
}

// PositionalEmbedding generates rotary position embeddings for attention mechanisms
func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
	dim := m.headDim / 2
	freq := dim / 2
	theta := float64(m.ropeTheta)
	merge := m.spatialMergeSize

	// Create frequency patterns for position encoding
	maxGridSize := max(grid.Height, grid.Width)
	freqVals := make([]float32, freq*maxGridSize)
	for i := range maxGridSize {
		for j := range freq {
			freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
		}
	}
323
	freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
324
325
326
327
328
329
330
331
332

	// Create position coordinates (y,x pairs) for the grid
	// In PyTorch: Equivalent to generating position ids with torch.arange()
	coords := make([]int32, 0, grid.Height*grid.Width*2)
	for y := range grid.Height {
		for x := range grid.Width {
			coords = append(coords, int32(y), int32(x))
		}
	}
333
	pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

	// Reshape and permute positions to match spatial merging pattern
	pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
	pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
	pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	pos = pos.Reshape(ctx, 2*merge*merge*grid.Width/merge*grid.Height/merge)

	// Use position indices to look up corresponding frequency values
	positionalEmbedding := freqs.Rows(ctx, pos)
	positionalEmbedding = positionalEmbedding.Reshape(ctx, positionalEmbedding.Dim(0)*2, positionalEmbedding.Dim(1)/2)
	return positionalEmbedding
}

// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
	patchSize := int(c.Uint("vision.patch_size", 14))
	hiddenSize := int(c.Uint("vision.embedding_length", 1280))
	numHeads := int(c.Uint("vision.attention.head_count", 16))
	numChannels := int(c.Uint("vision.num_channels", 3))
	eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
	ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
	spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
	windowSize := int(c.Uint("vision.window_size", 112))
	fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31})
	temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))

	model := &VisionModel{
		Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
		VisionModelOptions: &VisionModelOptions{
			hiddenSize:        hiddenSize,
			numHeads:          numHeads,
			headDim:           hiddenSize / numHeads,
			patchSize:         patchSize,
			numChannels:       numChannels,
			eps:               eps,
			ropeTheta:         ropeTheta,
			spatialMergeSize:  spatialMergeSize,
			windowSize:        windowSize,
			temporalPatchSize: temporalPatchSize,
			fullAttnBlocks:    fullAttnBlocks,
		},
	}

	return model
}