norm.cu 10.4 KB
Newer Older
1
/**
2
 * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "norm.cuh"

template <int block_size>
30
static __global__ void __launch_bounds__(1024) norm_f32(const float * x, float * dst, const int ncols, const float eps) {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;

    float2 mean_var = make_float2(0.f, 0.f);

    for (int col = tid; col < ncols; col += block_size) {
        const float xi = x[row*ncols + col];
        mean_var.x += xi;
        mean_var.y += xi * xi;
    }

    // sum up partial sums
    mean_var = warp_reduce_sum(mean_var);
    if (block_size > WARP_SIZE) {
        __shared__ float2 s_sum[32];
        int warp_id = threadIdx.x / WARP_SIZE;
        int lane_id = threadIdx.x % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = mean_var;
        }
        __syncthreads();
        mean_var = s_sum[lane_id];
        mean_var = warp_reduce_sum(mean_var);
    }

    const float mean = mean_var.x / ncols;
    const float var = mean_var.y / ncols - mean * mean;
    const float inv_std = rsqrtf(var + eps);

    for (int col = tid; col < ncols; col += block_size) {
        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
    }
}

template <int block_size>
66
static __global__ void __launch_bounds__(1024) group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    // blockIdx.x: num_groups idx
    // threadIdx.x: block_size idx
    int start = blockIdx.x * group_size;
    int end = start + group_size;

    start += threadIdx.x;

    if (end >= ne_elements) {
        end = ne_elements;
    }

    float tmp = 0.0f; // partial sum for thread in warp

    for (int j = start; j < end; j += block_size) {
        tmp += x[j];
    }

    tmp = warp_reduce_sum(tmp);
    if (block_size > WARP_SIZE) {
        __shared__ float s_sum[32];
        int warp_id = threadIdx.x / WARP_SIZE;
        int lane_id = threadIdx.x % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        __syncthreads();
        tmp = s_sum[lane_id];
        tmp = warp_reduce_sum(tmp);
    }

    float mean = tmp / group_size;
    tmp = 0.0f;

    for (int j = start; j < end; j += block_size) {
        float xi = x[j] - mean;
        dst[j] = xi;
        tmp += xi * xi;
    }

    tmp = warp_reduce_sum(tmp);
    if (block_size > WARP_SIZE) {
        __shared__ float s_sum[32];
        int warp_id = threadIdx.x / WARP_SIZE;
        int lane_id = threadIdx.x % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        __syncthreads();
        tmp = s_sum[lane_id];
        tmp = warp_reduce_sum(tmp);
    }

    float variance = tmp / group_size;
    float scale = rsqrtf(variance + eps);
    for (int j = start; j < end; j += block_size) {
        dst[j] *= scale;
    }
}

template <int block_size>
127
static __global__ void __launch_bounds__(1024) rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;

    float tmp = 0.0f; // partial sum for thread in warp

    for (int col = tid; col < ncols; col += block_size) {
        const float xi = x[row*ncols + col];
        tmp += xi * xi;
    }

    // sum up partial sums
    tmp = warp_reduce_sum(tmp);
    if (block_size > WARP_SIZE) {
        __shared__ float s_sum[32];
        int warp_id = threadIdx.x / WARP_SIZE;
        int lane_id = threadIdx.x % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        __syncthreads();
        tmp = s_sum[lane_id];
        tmp = warp_reduce_sum(tmp);
    }

    const float mean = tmp / ncols;
    const float scale = rsqrtf(mean + eps);

    for (int col = tid; col < ncols; col += block_size) {
        dst[row*ncols + col] = scale * x[row*ncols + col];
    }
}

xuxzh1's avatar
xuxzh1 committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
using floatx4 = __attribute__((__vector_size__(4 * sizeof(float)))) float;

template <typename T, int VEC, int NUM_WARPS>
__inline__ __device__ T BlockReduceSumVEC(T& val, T* shared) {

    #pragma unroll
    for (int offset = 32; offset > 0; offset >>= 1) {
        val += __shfl_xor_sync(0xffffffff, val, offset, 64); //64  
    }

    if constexpr(1 < NUM_WARPS) {
        const int tid = threadIdx.x;
        const int lid = tid % 64;
        const int wid = tid / 64;
        if(lid == 0) {
            shared[wid] = val;
        }
        __syncthreads();
        if(wid == 0 && lid < NUM_WARPS) {
            #pragma unroll
            for (int offset = NUM_WARPS/2; offset > 0; offset >>= 1) {
                shared[lid] += __shfl_xor_sync(0xffffffff, shared[lid], offset, 64); //64  
            }
            val = shared[lid];
        }
    }


    return val;
}

template <int block_size, int VEC = 4>
static __global__ void __launch_bounds__(1024) rms_norm_f32_opt1(const float * x, float * dst, const int ncols, const float eps) {
    const int row = blockIdx.x*blockDim.y + threadIdx.y;
    const int tid = threadIdx.x;
    constexpr int NUM_WARPS = block_size / 64;
    __shared__ float lds_sum[NUM_WARPS*4];
    __shared__  float sum_val;

    float tmp = 0.0f; // partial sum for thread in warp  floatx4

    floatx4 xi_vec;

    for (int col = tid*VEC; col < ncols; col += block_size*VEC) {
        xi_vec = *(floatx4*)(x + row*ncols + col);
        #pragma unroll
        for(int i = 0; i < VEC; ++i)
        {
            tmp += xi_vec[i]*xi_vec[i];
        }

    }

    
    tmp = BlockReduceSumVEC<float, VEC, NUM_WARPS>(tmp, lds_sum);

    // tmp = __shfl_sync(0xffffffff, tmp, 0); //lds or shfl
    if(tid == 0)
        sum_val = rsqrtf(tmp / ncols + eps);
    __syncthreads();
    float scale = sum_val;


    //重复利用寄存器访存
    for (int col = tid*VEC; col < ncols; col += block_size*VEC) {
        xi_vec = *(floatx4*)(x + row*ncols + col);
        #pragma unroll
        for(int i = 0; i < VEC; ++i){
            xi_vec[i] = xi_vec[i] * scale;
        }

        *(floatx4*)(dst + row*ncols + col) = xi_vec;
    }
}

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    if (ncols < 1024) {
        const dim3 block_dims(WARP_SIZE, 1, 1);
        norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
    } else {
        const dim3 block_dims(1024, 1, 1);
        norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
    }
}

static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
    if (group_size < 1024) {
        const dim3 block_dims(WARP_SIZE, 1, 1);
        group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
    } else {
        const dim3 block_dims(1024, 1, 1);
        group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
    }
}

static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    if (ncols < 1024) {
        const dim3 block_dims(WARP_SIZE, 1, 1);
        rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
    } else {
        const dim3 block_dims(1024, 1, 1);
xuxzh1's avatar
xuxzh1 committed
263
        rms_norm_f32_opt1<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    }
}

void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t nrows = ggml_nrows(src0);

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}

void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    int num_groups = dst->op_params[0];

    float eps;
    memcpy(&eps, dst->op_params + 1, sizeof(float));

    int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
    group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream);
}

void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    const int64_t ne00 = src0->ne[0];
    const int64_t nrows = ggml_nrows(src0);

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}