device.go 8.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
package ml

import (
	"context"
	"encoding/binary"
	"fmt"
	"hash/maphash"
	"log/slog"
	"slices"
	"sort"
	"strconv"
	"strings"

	"github.com/ollama/ollama/format"
)

// GPULayers is a set of layers to be allocated on a single GPU
type GPULayers struct {
	DeviceID

	// Layers is a set of layer indicies to load
	Layers []int
}

func (g GPULayers) String() string {
	if len(g.Layers) == 0 {
		return ""
	}

	slices.Sort(g.Layers)

	contiguous := true
	base := g.Layers[0]
	for i := range g.Layers {
		if g.Layers[i] != base+i {
			contiguous = false
			break
		}
	}

	if contiguous {
		return fmt.Sprintf("ID:%v Layers:%v(%v..%v)", g.ID, len(g.Layers), g.Layers[0], g.Layers[len(g.Layers)-1])
	} else {
		return fmt.Sprintf("ID:%v Layers:%v%v", g.ID, len(g.Layers), g.Layers)
	}
}

// GPULayersList is a set of layer allocations across multiple GPUs
type GPULayersList []GPULayers

func (l GPULayersList) String() string {
	if l.Sum() > 0 {
		return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l))
	} else {
		return fmt.Sprintf("%v", []GPULayers(l))
	}
}

// Sum is the total number of layers assigned across all GPUs
func (l GPULayersList) Sum() int {
	var sum int

	for _, g := range l {
		sum += len(g.Layers)
	}

	return sum
}

var h maphash.Hash

// Hash is an identifier of this layer assignment
func (l GPULayersList) Hash() uint64 {
	h.Reset()
	for _, g := range l {
		if len(g.Layers) > 0 {
			h.WriteString(g.ID + g.Library)
			for _, l := range g.Layers {
				binary.Write(&h, binary.NativeEndian, int64(l))
			}
		}
	}

	return h.Sum64()
}

// ErrNoMem is returned when panicing due to insufficient memory. It includes
// the attempted memory allocation.
type ErrNoMem struct {
	BackendMemory
}

func (e ErrNoMem) Error() string {
	return fmt.Sprintf("insufficient memory - required allocations: %+v", e.BackendMemory)
}

// Minimal unique device identification
type DeviceID struct {
	// ID is an identifier for the device for matching with system
	// management libraries.  The ID is only unique for other devices
	// using the same Library.
	// This ID represents a "post filtered" view of the enumerated devices
	// if the ID is numeric
	ID string `json:"id"`

	// Library identifies which library is used for the device (e.g. CUDA, ROCm, etc.)
	Library string `json:"backend,omitempty"`
}

// DeviceMemory provides a breakdown of the memory needed
// per device, such as a CPU or GPU.
type DeviceMemory struct {
	DeviceID

	// Name is the name of the device as labeled by the backend. It
	// may not be persistent across instances of the runner.
	Name string

	// Weights is the per-layer memory needed for the model weights.
	Weights []uint64

	// Cache is the per-layer memory needed for the KV cache.
	Cache []uint64

	// Graph is the size of the compute graph. It is not per-layer.
	Graph uint64
}

func sumMemory(mem []uint64) uint64 {
	var sum uint64

	for _, m := range mem {
		sum += m
	}

	return sum
}

// Size returns the total size of the memory required by this device
func (m DeviceMemory) Size() uint64 {
	return sumMemory(m.Weights) + sumMemory(m.Cache) + m.Graph
}

func memoryPresent(mem []uint64) bool {
	return slices.ContainsFunc(mem, func(m uint64) bool { return m != 0 })
}

func (m DeviceMemory) LogValue() slog.Value {
	var attrs []slog.Attr
	if memoryPresent(m.Weights) {
		attrs = append(attrs, slog.Any("Weights", m.Weights))
	}

	if memoryPresent(m.Cache) {
		attrs = append(attrs, slog.Any("Cache", m.Cache))
	}

	if m.Graph != 0 {
		attrs = append(attrs, slog.Any("Graph", m.Graph))
	}

	if len(attrs) > 0 && m.ID != "" {
		attrs = append([]slog.Attr{slog.String("ID", m.ID)}, attrs...)
	}

	return slog.GroupValue(attrs...)
}

// BackendMemory provides the amount of memory required to load the model
// per device based on the BackendParams. In some cases, not all required
// allocations will be known at this point. However, the size of the most recent
// allocation is guaranteed to be provided so that if it failed, the caller can
// accommodate that to make forward progress.
type BackendMemory struct {
	// InputWeights are always located on the CPU and cannot be moved
	InputWeights uint64

	// CPU model components are located in system memory. This does not
	// include unified memory allocated through the GPU.
	CPU DeviceMemory

	// GPU model components are located on one or more GPUs.
	GPUs []DeviceMemory
}

func (m BackendMemory) LogValue() slog.Value {
	var attrs []slog.Attr
	if m.InputWeights != 0 {
		attrs = append(attrs, slog.Any("InputWeights", m.InputWeights))
	}

	attrs = append(attrs, slog.Any(m.CPU.Name, m.CPU))
	for _, g := range m.GPUs {
		attrs = append(attrs, slog.Any(g.Name, g))
	}

	return slog.GroupValue(attrs...)
}

// Log prints a high level summary of the memory
func (m BackendMemory) Log(level slog.Level) {
	var total uint64

	for _, gpu := range m.GPUs {
		if sum := sumMemory(gpu.Weights); sum > 0 {
			slog.Log(context.TODO(), level, "model weights", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
	if sum := m.InputWeights + sumMemory(m.CPU.Weights); sum > 0 {
		slog.Log(context.TODO(), level, "model weights", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	for _, gpu := range m.GPUs {
		if sum := sumMemory(gpu.Cache); sum > 0 {
			slog.Log(context.TODO(), level, "kv cache", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
	if sum := sumMemory(m.CPU.Cache); sum > 0 {
		slog.Log(context.TODO(), level, "kv cache", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	for _, gpu := range m.GPUs {
		if sum := gpu.Graph; sum > 0 {
			slog.Log(context.TODO(), level, "compute graph", "device", gpu.Name, "size", format.HumanBytes2(sum))
			total += sum
		}
	}
	if sum := m.CPU.Graph; sum > 0 {
		slog.Log(context.TODO(), level, "compute graph", "device", m.CPU.Name, "size", format.HumanBytes2(sum))
		total += sum
	}

	if total > 0 {
		slog.Log(context.TODO(), level, "total memory", "size", format.HumanBytes2(total))
	}
}

type DeviceInfo struct {
	DeviceID

	// Name is the name of the device as labeled by the backend. It
	// may not be persistent across instances of the runner.
	Name string `json:"name"`

	// Description is the longer user-friendly identification of the device
	Description string `json:"description"`

	// FilterID is populated with the unfiltered device ID if a numeric ID is used
	// so the device can be included.
	FilteredID string `json:"filtered_id,omitempty"`

	// Integrated is set true for integrated GPUs, false for Discrete GPUs
	Integrated bool `json:"integration,omitempty"`

	// PCIID is the bus, device and domain ID of the device for deduplication
	// when discovered by multiple backends
	PCIID string `json:"pci_id,omitempty"`

	// TotalMemory is the total amount of memory the device can use for loading models
	TotalMemory uint64 `json:"total_memory"`

	// FreeMemory is the amount of memory currently available on the device for loading models
	FreeMemory uint64 `json:"free_memory,omitempty"`

	// ComputeMajor is the major version of capabilities of the device
	// if unsupported by the backend, -1 will be returned
	ComputeMajor int

	// ComputeMinor is the minor version of capabilities of the device
	// if unsupported by the backend, -1 will be returned
	ComputeMinor int

	// Driver Information
	DriverMajor int `json:"driver_major,omitempty"`
	DriverMinor int `json:"driver_minor,omitempty"`

	// Where backends were loaded from
	LibraryPath []string
}

func (d DeviceInfo) Compute() string {
	// AMD gfx is encoded into the major minor in hex form
	if strings.EqualFold(d.Library, "ROCm") {
		return fmt.Sprintf("gfx%x%02x", d.ComputeMajor, d.ComputeMinor)
	}
	return strconv.Itoa(d.ComputeMajor) + "." + strconv.Itoa(d.ComputeMinor)
}

func (d DeviceInfo) Driver() string {
	return strconv.Itoa(d.DriverMajor) + "." + strconv.Itoa(d.DriverMinor)
}

type DeviceComparison int

const (
	UniqueDevice      DeviceComparison = iota
	SameBackendDevice                  // The device is the same, and the library/backend is the same
	DuplicateDevice                    // The same physical device but different library/backend (overlapping device)
)

func (a DeviceInfo) Compare(b DeviceInfo) DeviceComparison {
	if a.PCIID != b.PCIID {
		return UniqueDevice
	}
	if a.Library == b.Library {
		return SameBackendDevice
	}
	return DuplicateDevice
}

// For a SameBackendDevice, return true if b is better than a
// e.g. newer GPU library version
func (a DeviceInfo) IsBetter(b DeviceInfo) bool {
	aLib := a.LibraryPath[len(a.LibraryPath)-1]
	bLib := b.LibraryPath[len(b.LibraryPath)-1]
	if aLib == bLib {
		return false
	}
	aLibSplit := strings.SplitN(aLib, "_", 2)
	bLibSplit := strings.SplitN(bLib, "_", 2)
	if len(aLibSplit) < 2 || len(bLibSplit) < 2 {
		return false
	}
	if aLibSplit[0] != bLibSplit[0] {
		slog.Debug("unexpected libraries", "a", aLib, "b", bLib)
		return false
	}
	if aLibSplit[1] == bLibSplit[1] {
		return false
	}
	cmp := []string{aLibSplit[1], bLibSplit[1]}
	sort.Sort(sort.Reverse(sort.StringSlice(cmp)))
	return cmp[0] == bLibSplit[1]
}