clip.cpp 178 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
#include "ggml-cpu.h"
10
11
#include "ggml-alloc.h"
#include "ggml-backend.h"
12
#include "gguf.h"
13
14
15
16
17
18
19
20
21

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
22
#include <unordered_set>
23
24
25
26
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
27
#include <array>
28
#include <numeric>
29
#include <functional>
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

44
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
45

46
47
enum ffn_op_type {
    FFN_GELU,
48
    FFN_GELU_ERF,
49
50
51
52
53
54
55
56
57
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

58
//#define CLIP_DEBUG_FUNCTIONS
59
60
61
62
63

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
64
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
83
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

173
174
175
176
177
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

178
179
180
struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
181
182
    int32_t n_embd;
    int32_t n_ff;
183
184
185
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;
186
    int32_t proj_scale_factor = 0; // idefics3
187

188
189
190
    float image_mean[3];
    float image_std[3];

191
192
193
    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
194
    int32_t warmup_audio_size = 3000;
195
196
197

    ffn_op_type ffn_op = FFN_GELU;

198
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
199

200
201
    float eps = 1e-6;
    float rope_theta = 0.0;
202

203
    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
204
    int32_t image_crop_resolution;
205
    std::unordered_set<int32_t> vision_feature_layer;
206
207
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
208
    int32_t spatial_merge_size = 0;
209
210
211
212
213
214
215
216

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
217
218
219
220
};

struct clip_layer {
    // attention
221
222
223
224
225
226
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
227

228
229
    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;
230

231
232
    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;
233

234
235
236
    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;
237

238
239
240
241
242
243
    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;
244
245

    // layernorm 2
246
247
248
249
250
251
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
252
253
};

254
255
256
257
struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;
258
259

    // embeddings
260
261
262
263
264
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
265

266
267
    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;
268
269
270

    std::vector<clip_layer> layers;

271
272
    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;
273

274
275
276
    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;
277
278

    // LLaVA projection
279
280
281
282
283
    ggml_tensor * mm_input_norm_w = nullptr;
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;
284

285
    ggml_tensor * image_newline = nullptr;
286
287

    // Yi type models with mlp+normalization projection
288
289
290
291
292
293
294
295
296
297
298
299
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
    ggml_tensor * mm_glm_tok_boi = nullptr;
    ggml_tensor * mm_glm_tok_eoi = nullptr;
300

301
    // MobileVLM projection
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
326
327

    // MobileVLM_V2 projection
328
329
330
331
332
333
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;
334
335

    // MINICPMV projection
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;
354
355

    // gemma3
356
357
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;
358
359

    // pixtral
360
361
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
362

363
364
365
366
367
368
369
370
371
372
373
374
    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
375

376
377
378
379
380
    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};
381

382
383
struct clip_ctx {
    clip_model model;
384

385
386
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
387
388
389

    std::vector<uint8_t> buf_compute_meta;

390
391
392
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

393
394
    ggml_backend_t backend = nullptr;
    ggml_backend_t backend_cpu = nullptr;
395
396
    ggml_backend_buffer_ptr buf;

397
    int max_nodes = 8192;
398
    ggml_backend_sched_ptr sched;
399

400
401
402
    // for debugging
    bool debug_graph = false;
    std::vector<ggml_tensor *> debug_print_tensors;
403

404
    clip_ctx(clip_context_params & ctx_params) {
405
        debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
406
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
407
408
409
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
410
411
412
413
414
415
416
417
418
419
420
421
        if (ctx_params.use_gpu) {
            auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
            if (backend_name != nullptr) {
                backend = ggml_backend_init_by_name(backend_name, nullptr);
                if (!backend) {
                    LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
                }
            }
            if (!backend) {
                backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
            }
        }
422
423
424
425
426
427
428
429
430
431
432
433
434
435

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
436
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
437
438
439
440
441
442
443
444
445
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
446
447
448
449
450

    // this function is added so that we don't change too much of the existing code
    projector_type proj_type() const {
        return model.proj_type;
    }
451
452
};

453
454
struct clip_graph {
    clip_ctx * ctx;
455
    const clip_model & model;
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
478
            model(ctx->model),
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
498
        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
499
500
501
502
503
504
505
506
507
508
509
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);

510
        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
            const int kernel_size = hparams.proj_scale_factor;

            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

533
        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578

            const int scale_factor = model.hparams.proj_scale_factor;
            const int n_embd = cur->ne[0];
            const int seq    = cur->ne[1];
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = std::sqrt(seq);
            const int width  = std::sqrt(seq);
            GGML_ASSERT(scale_factor != 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                seq / (scale_factor * scale_factor),
                bsz);

            cur = ggml_mul_mat(ctx0, model.projection, cur);
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
559
560
        }

561
562
        // build the graph
        ggml_build_forward_expand(gf, cur);
563

564
565
        return gf;
    }
566

567
568
    ggml_cgraph * build_pixtral() {
        const int n_merge = hparams.spatial_merge_size;
569

570
571
572
573
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
574

575
576
577
        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
578

579
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
580
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
581
        };
582

583
584
585
586
587
588
589
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);
590

591
592
593
594
        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
            GGML_ASSERT(hparams.spatial_merge_size > 0);
595

596
            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
597

598
599
600
601
            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);
602

603
604
605
606
            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
607

608
609
610
            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
611
612
        }

613
614
615
616
617
618
        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }
619

620
621
622
623
624
625
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }
626

627
628
629
630
631
632
        // arrangement of the [IMG_BREAK] token
        {
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
633

634
635
636
637
638
            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
639

640
641
642
643
644
645
646
647
648
            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }
649

650
651
        // build the graph
        ggml_build_forward_expand(gf, cur);
652

653
        return gf;
654
655
    }

656
657
658
659
    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);
660

661
662
663
664
665
        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
666

667
        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
668
669
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl
670

671
        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
672

673
674
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
675

676
677
        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

            inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
            inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
            inp = ggml_reshape_3d(
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
732

733
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
734

735
736
737
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
763

764
765
                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);
766

767
                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
768

769
770
771
772
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }
773

774
775
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
776

777
            inpL = cur; // inpL = residual, cur = hidden_states
778

779
            cb(cur, "ffn_inp", il);
780

781
782
783
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
784

785
786
787
788
789
790
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
791

792
            cb(cur, "ffn_out", il);
793

794
795
796
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
797

798
            inpL = cur;
799
800
        }

801
802
803
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
804
805
        }

806
807
808
        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
809

810
811
        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
812

813
814
815
816
        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
817
818
819
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

820
821
822
823
        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);
824

825
826
827
828
829
830
            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }
831

832
833
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
834

835
        return gf;
836
837
    }

838
839
    ggml_cgraph * build_minicpmv() {
        const int batch_size = 1;
840

841
842
        GGML_ASSERT(model.class_embedding == nullptr);
        const int n_pos = n_patches;
843

844
845
846
847
848
        // position embeddings for the projector (not for ViT)
        int n_output_dim = clip_n_mmproj_embd(ctx);
        ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
849

850
851
852
853
        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
854

855
856
857
858
859
860
861
862
863
        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);
864

865
        // resampler projector (it is just another transformer)
866

867
868
        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
869

870
871
872
        // norm
        q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
873

874
875
        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
876

877
878
879
880
881
882
        // attention
        {
            int n_embd = clip_n_mmproj_embd(ctx);
            const int d_head = 128;
            int n_head = n_embd/d_head;
            int num_query = 96;
883
884
            if (ctx->model.hparams.minicpmv_version == 2) {
                // MiniCPM-V 2.5
885
                num_query = 96;
886
887
888
889
890
            } else if (ctx->model.hparams.minicpmv_version == 3) {
                // MiniCPM-V 2.6
                num_query = 64;
            } else if (ctx->model.hparams.minicpmv_version == 4) {
                // MiniCPM-o 2.6
891
                num_query = 64;
892
893
            } else if (ctx->model.hparams.minicpmv_version == 5) {
                // MiniCPM-V 4.0
894
895
                num_query = 64;
            }
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
                Q, K, V, nullptr, kq_scale, -1);
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
926

927
928
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
929

930
        return gf;
931
932
    }

933
934
935
    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
936

937
938
        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();
939

940
941
        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
942

943
944
945
946
947
        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
948

949
950
951
952
953
954
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);
955

956
957
958
959
        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);
960

961
        // pixel shuffle
962
        {
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
            cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }
993

994
995
        // build the graph
        ggml_build_forward_expand(gf, cur);
996

997
998
        return gf;
    }
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    ggml_cgraph * build_llama4() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * inp = build_inp_raw();

        // Llama4UnfoldConvolution
        {
            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
                                                    patch_size, patch_size, 3, n_embd);
            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
            cb(inp, "patch_conv", -1);
        }

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                add_pos);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        // based on Llama4VisionPixelShuffleMLP
        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
        {
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz = 1; // batch size, always 1 for now since we don't support batching
            GGML_ASSERT(scale_factor > 0);
            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
            cur = ggml_reshape_4d(ctx0, cur,
                n_embd * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
            cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                n_patches / scale_factor / scale_factor);
            cb(cur, "pixel_shuffle", -1);
        }

        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
        {
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cb(cur, "adapter_mlp", -1);
        }

        // Llama4MultiModalProjector
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
        cb(cur, "projected", -1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1095
1096
1097
1098
1099
    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
1100

1101
        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
1102

1103
1104
1105
1106
1107
1108
        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;
1109

1110
            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1111
1112
                il_last += 1;
            }
1113

1114
1115
1116
1117
1118
1119
            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
1120
            }
1121
1122
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }
1123

1124
        ggml_tensor * inp = build_inp();
1125

1126
1127
1128
        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1129
1130
        }

1131
1132
1133
        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1134

1135
        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
1136

1137
        ggml_tensor * inpL = inp;
1138

1139
1140
1141
1142
1143
        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }
1144

1145
1146
        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;
1147

1148
1149
1150
1151
        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
1152

1153
1154
1155
1156
1157
            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }
1158

1159
1160
1161
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);
1162

1163
1164
1165
1166
1167
1168
            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1169

1170
1171
1172
1173
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1174

1175
1176
1177
1178
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1179

1180
1181
1182
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1183

1184
1185
1186
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1187

1188
1189
1190
1191
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }
1192

1193
1194
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1195

1196
            inpL = cur; // inpL = residual, cur = hidden_states
1197

1198
            cb(cur, "ffn_inp", il);
1199

1200
1201
1202
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);
1203

1204
1205
1206
1207
1208
1209
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
1210

1211
            cb(cur, "ffn_out", il);
1212

1213
1214
1215
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1216

1217
            inpL = cur;
1218
        }
1219

1220
1221
1222
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
1223
        }
1224

1225
        ggml_tensor * embeddings = inpL;
1226

1227
1228
1229
1230
1231
1232
        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }
1233

1234
1235
1236
1237
1238
1239
1240
1241
            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }
1242

1243
        // llava projector (also used by granite)
1244
        if (ctx->model.hparams.has_llava_projector) {
1245
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
1246

1247
1248
1249
            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);
1250

1251
1252
1253
            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);
1254

1255
            // print_tensor_info(embeddings, "embeddings");
1256

1257
            // llava projector
1258
            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
1259
1260
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
1261

1262
1263
1264
1265
1266
1267
                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
1268
            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
1289
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                    mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
                    mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }
1350

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
1399
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
                // mlp_2 ne = [576, 2048, 1, 1]
                mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }
1427

1428
        // glm projector
1429
        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
            embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
1446
                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
                embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
            }
        }
1457

1458
1459
1460
        else {
            GGML_ABORT("llava: unknown projector type");
        }
1461

1462
1463
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1464

1465
        return gf;
1466
1467
    }

1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
    // whisper encoder with custom projector
    ggml_cgraph * build_whisper_enc() {
        const int n_frames = img.nx;
        const int n_pos    = n_frames / 2;
        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

        ggml_tensor * inp = build_inp_raw(1);

        // conv1d block
        {
            // convolution + gelu
            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_1_b);

            cur = ggml_gelu_erf(ctx0, cur);

            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_2_b);

            cur = ggml_gelu_erf(ctx0, cur);
            // transpose
            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cb(inp, "after_conv1d", -1);
        }

        // sanity check (only check one layer, but it should be the same for all)
        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
        GGML_ASSERT(model.layers[0].q_b);
        GGML_ASSERT(model.layers[0].v_b);
        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
        GGML_ASSERT(model.post_ln_w && model.post_ln_b);

        ggml_tensor * pos_embd_selected = ggml_view_2d(
            ctx0, model.position_embeddings,
            model.position_embeddings->ne[0], n_pos,
            model.position_embeddings->nb[1], 0
        );
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                pos_embd_selected,
                                nullptr);

        cb(cur, "after_transformer", -1);

        if (model.audio_has_stack_frames()) {
            // StackAudioFrames
            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
            int64_t stride = n_embd * hparams.proj_stack_factor;
            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
            int64_t pad = padded_len - ggml_nelements(cur);
            if (pad > 0) {
                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
            }
            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
                                ggml_row_size(cur->type, stride), 0);
            cb(cur, "after_stacked", -1);
        }

        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
            // UltravoxProjector
            // pre-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);

            // ffn in
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);

            // swiglu
            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
            cur = ggml_swiglu_swapped(ctx0, cur);

            // mid-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);

            // ffn out
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_fc_b);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_gelu_erf(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else {
            GGML_ABORT("%s: unknown projector type", __func__);
        }

        cb(cur, "projected", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1572
1573
1574
1575
1576
private:
    //
    // utility functions
    //

1577
1578
1579
1580
1581
1582
1583
1584
1585
    void cb(ggml_tensor * cur0, const char * name, int il) const {
        if (ctx->debug_graph) {
            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
            ggml_set_name(cur, cur_name.c_str());
            ggml_set_output(cur);
            ggml_build_forward_expand(gf, cur);
            ctx->debug_print_tensors.push_back(cur);
        }
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
    }

    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1627

1628
1629
1630
1631
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1632

1633
1634
1635
1636
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1637

1638
1639
1640
1641
                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }
1642

1643
1644
1645
1646
                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }
1647

1648
1649
1650
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1651

1652
1653
1654
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1655

1656
1657
1658
1659
1660
1661
                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }
1662

1663
1664
1665
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
1666
            }
1667

1668
1669
1670
            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
1671
            }
1672

1673
1674
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1675

1676
            inpL = cur; // inpL = residual, cur = hidden_states
1677

1678
            cb(cur, "ffn_inp", il);
1679

1680
1681
1682
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
1683

1684
1685
1686
1687
1688
1689
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);
1690

1691
            cb(cur, "ffn_out", il);
1692

1693
1694
1695
1696
            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }
1697

1698
1699
1700
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1701

1702
            inpL = cur;
1703
1704
        }

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
        if (ctx->model.audio_has_avgpool()) {
            ggml_tensor * cur = inpL;
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            inpL = cur;
        }

1715
1716
1717
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
1718
        }
1719
1720
        return inpL;
    }
1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }
1735

1736
1737
    ggml_tensor * build_inp_raw(int channels = 3) {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
1738
1739
1740
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
1741
1742
    }

1743
1744
1745
1746
1747
1748
1749
    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {
1750

1751
1752
1753
        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);
1754

1755
1756
1757
        if (mw || mb) {
            cb(cur, "norm", il);
        }
1758

1759
1760
1761
1762
1763
        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
1764
1765
        }

1766
1767
1768
        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }
1769

1770
1771
        return cur;
    }
1772

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {
1783

1784
1785
        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);
1786

1787
1788
1789
1790
        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }
1791

1792
1793
1794
1795
1796
1797
1798
        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
1799
            }
1800
1801
        } else {
            cur = tmp;
1802
1803
        }

1804
        // we only support parallel ffn for now
1805
1806
        switch (type_op) {
            case FFN_SILU:
1807
1808
1809
1810
                if (gate) {
                    cur = ggml_swiglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_swiglu", il);
                } else {
1811
1812
1813
1814
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
1815
1816
1817
1818
                if (gate) {
                    cur = ggml_geglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu", il);
                } else {
1819
1820
1821
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
1822
1823
1824
1825
1826
1827
1828
1829
            case FFN_GELU_ERF:
                if (gate) {
                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_erf", il);
                } else {
                    cur = ggml_gelu_erf(ctx0, cur);
                    cb(cur, "ffn_gelu_erf", il);
                } break;
1830
            case FFN_GELU_QUICK:
1831
1832
1833
1834
                if (gate) {
                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_quick", il);
                } else {
1835
                    cur = ggml_gelu_quick(ctx0, cur);
1836
                    cb(cur, "ffn_gelu_quick", il);
1837
                } break;
1838
        }
1839
1840
1841

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
1842
        }
1843
1844
1845

        if (down_b) {
            cb(cur, "ffn_down", il);
1846
        }
1847
1848
1849

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
1850
        }
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
        v = ggml_cont(ctx0, v);
        //cb(k, "v", il);

        ggml_tensor * cur;

        // TODO @ngxson : support flash attention
        {
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];
            // const auto n_kv     = k->ne[1]; // for flash attention

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
1897
1898
        }

1899
        cb(cur, "kqv_out", il);
1900

1901
1902
        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
1903
        }
1904

1905
1906
        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
1907
        }
1908
1909

        return cur;
1910
    }
1911

1912
1913
1914
1915
1916
1917
    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
1918
1919
1920
1921
        ggml_tensor * pos_a, // first half
        ggml_tensor * pos_b, // second half
        const float freq_base,
        const bool interleave_freq
1922
1923
1924
1925
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];
1926

1927
1928
1929
1930
1931
1932
1933
1934
        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
1935
1936
1937
        const float freq_scale_odd = interleave_freq
                                    ? std::pow(freq_base, (float)-2/n_dim)
                                    : 1.0;
1938

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
1950
                pos_a,      // positions
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
            second = ggml_rope_ext(
                ctx0,
                second,
1970
                pos_b,      // positions
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
1981
    }
1982

1983
};
1984

1985
1986
1987
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);
1988

1989
    ggml_cgraph * res;
1990

1991
    switch (ctx->proj_type()) {
1992
1993
1994
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
            {
1995
                res = graph.build_siglip();
1996
1997
1998
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
1999
                res = graph.build_pixtral();
2000
            } break;
2001
        case PROJECTOR_TYPE_QWEN2VL:
2002
2003
        case PROJECTOR_TYPE_QWEN25VL:
            {
2004
2005
2006
2007
2008
2009
2010
2011
2012
                res = graph.build_qwen2vl();
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
2013
            } break;
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
        case PROJECTOR_TYPE_LLAMA4:
            {
                res = graph.build_llama4();
            } break;
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_QWEN2A:
            {
                res = graph.build_whisper_enc();
            } break;
2024
2025
        default:
            {
2026
                res = graph.build_llava();
2027
            } break;
2028
    }
2029
    return res;
2030
}
2031

2032
2033
2034
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
2035

2036
    std::string fname;
2037

2038
    size_t model_size = 0; // in bytes
2039

2040
2041
2042
2043
2044
    bool has_vision = false;
    bool has_audio  = false;

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
    clip_model_loader(const char * fname) : fname(fname) {
2045
2046
2047
2048
2049
2050
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
2051

2052
2053
2054
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
2055
2056
        }

2057
        ctx_meta.reset(meta);
2058

2059
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
2060

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
2074
2075
        }

2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
        // modalities
        {
            get_bool(KEY_HAS_VISION_ENC, has_vision, false);
            get_bool(KEY_HAS_AUDIO_ENC,  has_audio,  false);

            if (has_vision) {
                LOG_INF("%s: has vision encoder\n", __func__);
            }
            if (has_audio) {
                LOG_INF("%s: has audio encoder\n", __func__);
            }
        }

2089
2090
2091
2092
2093
2094
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
2095
                ggml_tensor * cur = ggml_get_tensor(meta, name);
2096
2097
2098
2099
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
2100
2101
2102
2103
            }
        }
    }

2104
2105
    void load_hparams(clip_model & model, clip_modality modality) {
        auto & hparams = model.hparams;
2106
        std::string log_ffn_op; // for logging
2107

2108
2109
2110
2111
2112
2113
2114
2115
2116
        // sanity check
        if (modality == CLIP_MODALITY_VISION) {
            GGML_ASSERT(has_vision);
        } else if (modality == CLIP_MODALITY_AUDIO) {
            GGML_ASSERT(has_audio);
        }
        model.modality = modality;


2117
        // projector type
2118
        std::string proj_type;
2119
2120
2121
        {
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
2122
                model.proj_type = clip_projector_type_from_string(proj_type);
2123
            }
2124
            if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
2125
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
2126
            }
2127
2128
2129
2130
2131
2132
2133

            // correct arch for multimodal models
            if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
                model.proj_type = modality == CLIP_MODALITY_VISION
                                    ? PROJECTOR_TYPE_QWEN25VL
                                    : PROJECTOR_TYPE_QWEN2A;
            }
2134
2135
        }

2136
2137
2138
        const bool is_vision = model.modality == CLIP_MODALITY_VISION;
        const bool is_audio  = model.modality == CLIP_MODALITY_AUDIO;

2139
2140
        // other hparams
        {
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
            const char * prefix = is_vision ? "vision" : "audio";
            get_u32(string_format(KEY_N_EMBD,         prefix), hparams.n_embd);
            get_u32(string_format(KEY_N_HEAD,         prefix), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           prefix), hparams.n_ff);
            get_u32(string_format(KEY_N_BLOCK,        prefix), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       prefix), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);

            if (is_vision) {
                get_u32(KEY_IMAGE_SIZE, hparams.image_size);
                get_u32(KEY_PATCH_SIZE, hparams.patch_size);
                get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
                get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy

            } else if (is_audio) {
                get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);

            } else {
                GGML_ASSERT(false && "unknown modality");
            }

            // for pinpoints, we need to convert it into a list of resolution candidates
            {
                std::vector<int> pinpoints;
                get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
                if (!pinpoints.empty()) {
                    for (size_t i = 0; i < pinpoints.size(); i += 2) {
                        hparams.image_res_candidates.push_back({
                            pinpoints[i],
                            pinpoints[i+1],
                        });
                    }
                }
            }
2175

2176
2177
2178
            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

2179
2180
2181
2182
            hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
                                       || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                                       || model.proj_type == PROJECTOR_TYPE_LDP
                                       || model.proj_type == PROJECTOR_TYPE_LDPV2;
2183

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

2204
2205
2206
2207
2208
2209
2210
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
2211

2212
            if (is_vision) {
2213
2214
2215
2216
2217
2218
2219
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
2220
2221
                    hparams.image_mean[i] = mean_data[i];
                    hparams.image_std[i]  = std_data[i];
2222
                }
2223
2224
            }

2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
2236
2237

            // model-specific params
2238
            switch (model.proj_type) {
2239
2240
                case PROJECTOR_TYPE_MINICPMV:
                    {
2241
2242
                        if (hparams.minicpmv_version == 0) {
                            hparams.minicpmv_version = 2; // default to 2 if not set
2243
2244
2245
                        }
                    } break;
                case PROJECTOR_TYPE_IDEFICS3:
2246
                case PROJECTOR_TYPE_INTERNVL:
2247
2248
2249
2250
2251
2252
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
                    {
                        hparams.rope_theta = 10000.0f;
2253
                        hparams.warmup_image_size = hparams.patch_size * 8;
2254
2255
2256
                        // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
                        // ref: https://github.com/ggml-org/llama.cpp/issues/14310
                        hparams.image_size = 1024;
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
                    } break;
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
                        hparams.proj_scale_factor = 4;
                        // test model (tinygemma3) has a different value, we optionally read it
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
                    {
                        // max image size = sqrt(max_pixels) = 3584
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
2275
2276
2277
                    } break;
                case PROJECTOR_TYPE_QWEN25VL:
                    {
2278
2279
2280
2281
2282
2283
                        // max image size = sqrt(max_pixels)
                        // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
2284
2285
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
                    } break;
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
                case PROJECTOR_TYPE_LLAMA4:
                    {
                        hparams.rope_theta = 10000.0f;
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
                        set_llava_uhd_res_candidates(model, 3);
                    } break;
                case PROJECTOR_TYPE_ULTRAVOX:
                case PROJECTOR_TYPE_QWEN2A:
                case PROJECTOR_TYPE_VOXTRAL:
                    {
                        bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
                                             model.proj_type == PROJECTOR_TYPE_VOXTRAL;
                        get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
                        if (hparams.n_mel_bins != 128) {
                            throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
                        }
                        hparams.ffn_op = FFN_GELU_ERF;
                        log_ffn_op = "gelu_erf"; // temporary solution for logging
                    } break;
2305
2306
2307
                default:
                    break;
            }
2308

2309
            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
2310
2311
2312
2313
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
2314
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
2315
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
            if (is_vision) {
                LOG_INF("\n--- vision hparams ---\n");
                LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
                LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
                LOG_INF("%s: has_llava_proj:     %d\n", __func__, hparams.has_llava_projector);
                LOG_INF("%s: minicpmv_version:   %d\n", __func__, hparams.minicpmv_version);
                LOG_INF("%s: proj_scale_factor:  %d\n", __func__, hparams.proj_scale_factor);
                LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
            } else if (is_audio) {
                LOG_INF("\n--- audio hparams ---\n");
                LOG_INF("%s: n_mel_bins:         %d\n", __func__, hparams.n_mel_bins);
                LOG_INF("%s: proj_stack_factor:  %d\n", __func__, hparams.proj_stack_factor);
            }
2329
            LOG_INF("\n");
2330
2331
2332
2333
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
2334

2335
2336
2337
    void load_tensors(clip_ctx & ctx_clip) {
        auto & model = ctx_clip.model;
        auto & hparams = model.hparams;
2338
2339
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
2340

2341
2342
2343
        // TODO @ngxson : support both audio and video in the future
        const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";

2344
2345
2346
2347
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
2348
2349
        }

2350
2351
        // create data context
        struct ggml_init_params params = {
2352
            /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
2353
2354
2355
2356
2357
2358
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
2359
2360
        }

2361
2362
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
2363
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
2364
2365
2366
2367
2368
2369
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
2370
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
2371
2372
2373
2374
2375
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
2376

2377
        model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
2378

2379
2380
        model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
        model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"),   false);
2381

2382
2383
        model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
        model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"),   false);
2384

2385
2386
2387
        model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
2388

2389
        model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
2390

2391
        // layers
2392
        model.layers.resize(hparams.n_layer);
2393
        for (int il = 0; il < hparams.n_layer; ++il) {
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
            auto & layer = model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        prefix, il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        prefix, il, "weight"), false);
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        prefix, il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        prefix, il, "weight"), false); // no bias

            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        prefix, il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        prefix, il, "bias"), false);
2412

2413
            // ffn
2414
2415
2416
2417
2418
2419
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"),   false);
2420

2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
            if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
            }
2433
2434
        }

2435
        switch (model.proj_type) {
2436
2437
2438
2439
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
2440
2441
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
2442
                    // Yi-type llava
2443
2444
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
2445
                    // missing in Yi-type llava
2446
2447
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
2448
                    // Yi-type llava
2449
2450
2451
2452
2453
                    model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (model.mm_3_w) {
2454
                        // TODO: this is a hack to support Yi-type llava
2455
                        model.proj_type = PROJECTOR_TYPE_MLP_NORM;
2456
                    }
2457
                    model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
2458
2459
2460
2461
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
2486
2487
2488
2489
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
2490
2491
2492
2493
2494
2495
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
2496
                } break;
2497
            case PROJECTOR_TYPE_MINICPMV:
2498
                {
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
                    // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
2518
2519
2520
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
                    model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
                    model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
2531
                } break;
2532
2533
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
2534
                {
2535
2536
2537
2538
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
2539
2540
2541
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
2542
2543
                    model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
2544
                } break;
2545
2546
            case PROJECTOR_TYPE_IDEFICS3:
                {
2547
                    model.projection = get_tensor(TN_MM_PROJECTOR);
2548
2549
2550
                } break;
            case PROJECTOR_TYPE_PIXTRAL:
                {
2551
2552
2553
2554
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
2555
                    // [IMG_BREAK] token embedding
2556
                    model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
2557
                    // for mistral small 3.1
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
            case PROJECTOR_TYPE_ULTRAVOX:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                    model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
                    model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2A:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
                    model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
                } break;
            case PROJECTOR_TYPE_VOXTRAL:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
2589
2590
2591
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
                    model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                } break;
            case PROJECTOR_TYPE_LLAMA4:
                {
                    model.mm_model_proj    = get_tensor(TN_MM_PROJECTOR);
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
2604
                } break;
2605
2606
2607
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
2608

2609
2610
2611
        // load data
        {
            std::vector<uint8_t> read_buf;
2612
2613

#ifdef _WIN32
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
2624
#if __GLIBCXX__
2625
2626
2627
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
2628
#else // MSVC
2629
2630
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
2631
#endif
2632
            free(wbuf);
2633
#else
2634
            auto fin = std::ifstream(fname, std::ios::binary);
2635
2636
#endif
            if (!fin) {
2637
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
2638
            }
2639
2640
2641
2642
2643
2644

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
2645
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
2661
2662
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
2663
            close(fd);
2664
#else
2665
            fin.close();
2666
#endif
2667
2668
2669

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
2670
2671
    }

2672
2673
    void alloc_compute_meta(clip_ctx & ctx_clip) {
        const auto & hparams = ctx_clip.model.hparams;
2674
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
2675
2676
2677
2678

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
2679
2680
2681
2682
2683
2684
2685
        if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
            img->nx = hparams.warmup_image_size;
            img->ny = hparams.warmup_image_size;
        } else {
            img->nx = hparams.warmup_audio_size;
            img->ny = hparams.n_mel_bins;
        }
2686
2687
        batch.entries.push_back(std::move(img));

2688
        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
2689
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
2690

2691
2692
2693
2694
2695
2696
2697
2698
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
2699
            }
2700
2701
        }
    }
2702

2703
2704
2705
2706
2707
2708
2709
2710
    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
2711

2712
2713
2714
2715
2716
2717
2718
2719
    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
2720

2721
2722
2723
2724
2725
    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2726
        }
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2744
        }
2745
2746
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
2747

2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
2761

2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
    void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
        auto & hparams = model.hparams;
        for (int x = 1; x <= max_patches_per_side; x++) {
            for (int y = 1; y <= max_patches_per_side; y++) {
                if (x == 1 && y == 1) {
                    continue; // skip the first point
                }
                hparams.image_res_candidates.push_back(clip_image_size{
                    x*hparams.image_size,
                    y*hparams.image_size,
                });
            }
        }
    }
};
2777

2778
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
2779
    g_logger_state.verbosity_thold = ctx_params.verbosity;
2780
2781
    clip_ctx * ctx_vision = nullptr;
    clip_ctx * ctx_audio = nullptr;
2782
2783

    try {
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
        clip_model_loader loader(fname);

        if (loader.has_vision) {
            ctx_vision = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
            loader.load_tensors(*ctx_vision);
            loader.alloc_compute_meta(*ctx_vision);
        }

        if (loader.has_audio) {
            ctx_audio = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
            loader.load_tensors(*ctx_audio);
            loader.alloc_compute_meta(*ctx_audio);
        }

2800
2801
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
2802
2803
2804
2805
2806
2807
2808
        if (ctx_vision) {
            delete ctx_vision;
        }
        if (ctx_audio) {
            delete ctx_audio;
        }
        return {nullptr, nullptr};
2809
2810
    }

2811
    return {ctx_vision, ctx_audio};
2812
2813
}

2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
2866
    }
2867
    return batch->entries[idx]->ny;
2868
}
2869
2870
2871
2872
2873

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
2874
    }
2875
    return batch->entries[idx].get();
2876
2877
}

2878
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
2879
2880
2881
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
2882
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
2883
2884
2885
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
2886
2887
2888
2889
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
2890

2891
2892
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
2893
        int c = i % 3; // rgb
2894
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
2895
2896
2897
    }
}

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
2935

2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
        float C[5];
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
2994
2995
2996
                }
            }
        }
2997
2998

        return true;
2999
3000
    }

3001
3002
3003
3004
3005
3006
    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;
3007

3008
3009
        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;
3010

3011
        int new_width, new_height;
3012

3013
3014
3015
3016
3017
3018
3019
        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }
3020

3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }
3035

3036
3037
3038
        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;
3039

3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }
3050

3051
3052
3053
3054
    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);
3055

3056
3057
3058
3059
3060
3061
3062
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
3063
3064
3065
            }
        }
    }
3066

3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than max_dimension, it will be resized to max_dimension
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
        if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
            return {0, 0};
        }

        float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
                                              static_cast<float>(max_dimension) / inp_size.height));

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

3081
3082
        int aligned_width  = CLIP_ALIGN((int)target_width_f,  align_size);
        int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
3083
3084
3085
3086

        return {aligned_width, aligned_height};
    }

3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
3097
3098

/**
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
3110
 *
3111
3112
3113
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
3114
 */
3115
3116
3117
3118
3119
3120
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
3121

3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147

        const bool has_slices    = original_size.width > slice_size || original_size.height > slice_size;
        const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();

        if (!has_slices) {
            // skip slicing logic
            res.overview_size = clip_image_size{slice_size, slice_size};
            res.refined_size  = clip_image_size{0, 0};
            res.grid_size     = clip_image_size{0, 0};

            return res;
        }
3148
3149
3150
3151

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
3152
3153
                original_size,
                ctx->model.hparams.image_res_candidates);
3154
3155
3156
3157
3158
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

3159
3160
3161
3162
3163
3164
            LOG_DBG("%s: using pinpoints for slicing\n", __func__);
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width,  res.refined_size.height);

3165
3166
3167
3168
3169
3170
3171
3172
            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
3173
3174
3175
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
3176
3177
                }
            }
3178

3179
3180
3181
3182
            res.grid_size.height = refine_size.height / slice_size;
            res.grid_size.width  = refine_size.width  / slice_size;
            LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);

3183
            return res;
3184
3185
        }

3186
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
3187

3188
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
3189
        res.overview_size = best_size;
3190

3191
3192
3193
3194
3195
        {
            const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
            const float log_ratio = log((float)original_width / original_height);
            const float ratio = (float)original_width * original_height / (slice_size * slice_size);
            const int multiple = fmin(ceil(ratio), max_slice_nums);
3196

3197
3198
3199
3200
3201
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

3202
3203
3204
3205
3206
3207
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width, res.refined_size.height,
                    res.grid_size.width, res.grid_size.height);

3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
3224
3225
3226
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
3227
3228
3229
                }
            }
        }
3230

3231
3232
        return res;
    }
3233

3234
3235
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
3236

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }
3253

3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
3264
        }
3265
3266

        return output;
3267
3268
    }

3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
    static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
        float scale_width  = static_cast<float>(target_max.width)  / orig.width;
        float scale_height = static_cast<float>(target_max.height) / orig.height;
        float scale = std::min(scale_width, scale_height);
        return clip_image_size{
            static_cast<int>(orig.width  * scale),
            static_cast<int>(orig.height * scale),
        };
    }

3294
3295
3296
    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
3297
3298
3299
3300
3301
3302
3303
3304
     * For example, when given a list of resolutions:
     *  - 100x100
     *  - 200x100
     *  - 100x200
     *  - 200x200
     *
     * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
     *
3305
3306
3307
3308
3309
3310
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        clip_image_size best_fit;
3311
        int min_wasted_area = std::numeric_limits<int>::max();
3312
        int max_effective_resolution = 0;
3313
3314
3315
3316
3317
3318
3319
3320
3321

        for (const clip_image_size & candidate : possible_resolutions) {
            auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
            int effective_resolution = std::min(
                target_size.width * target_size.height,
                original_size.width * original_size.height);
            int wasted_area = (candidate.width * candidate.height) - effective_resolution;

            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
3322
                max_effective_resolution = effective_resolution;
3323
3324
                min_wasted_area = wasted_area;
                best_fit = candidate;
3325
            }
3326
3327

            LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
3328
        }
3329
3330

        return best_fit;
3331
3332
    }

3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
3375
                }
3376
                ++m;
3377
3378
            }
        }
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
3390
    }
3391
};
3392
3393
3394

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
3395
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
3396
3397
    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
3398
    auto & params = ctx->model.hparams;
3399
3400
3401
3402
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }
3403

3404
    if (clip_is_minicpmv(ctx)) {
3405
3406
3407
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

3408
        for (size_t i = 0; i < imgs.size(); ++i) {
3409
3410
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
3411
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
3412
            res_imgs->entries.push_back(std::move(res));
3413
        }
3414
3415
3416

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
3417
        return true;
3418
3419

    } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3420
        clip_image_u8 resized;
3421
3422
3423
        auto patch_size = params.patch_size * 2;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
        image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
3424

3425
3426
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
3427
        normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
3428
        // res_imgs->data[0] = *res;
3429
        res_imgs->entries.push_back(std::move(img_f32));
3430
3431
        return true;
    }
3432
3433
3434
3435
    else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
            || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
            || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
            || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
3436
    ) {
3437
        clip_image_u8 resized_image;
3438
        int sz = params.image_size;
3439
        image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
3440
        clip_image_f32_ptr img_f32(clip_image_f32_init());
3441
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
3442
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
3443
        res_imgs->entries.push_back(std::move(img_f32));
3444
        return true;
3445
3446

    } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
3447
3448
3449
3450
        clip_image_u8 resized_image;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
        image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
        clip_image_f32_ptr img_f32(clip_image_f32_init());
3451
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
3452
3453
        res_imgs->entries.push_back(std::move(img_f32));
        return true;
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469

    } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
        GGML_ASSERT(!params.image_res_candidates.empty());
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

        for (size_t i = 0; i < imgs.size(); ++i) {
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
            res_imgs->entries.push_back(std::move(res));
        }

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
        return true;

3470
    }
3471

3472
3473
3474
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

3475
    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
3476
3477
3478
3479
3480

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
3481
3482
3483
3484
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

3485
3486
        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};
3487

3488
3489
        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
3490

3491
        clip_image_f32_ptr res(clip_image_f32_init());
3492
        normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
3493
3494
        res_imgs->entries.push_back(std::move(res));
        return true;
3495

3496
    } else if (!params.image_res_candidates.empty()) {
3497
3498
3499
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
3500

3501
3502
3503
        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
3504
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
3505
            res_imgs->entries.push_back(std::move(res));
3506
3507
        }

3508
        return true;
3509

3510
    }
3511

3512
    GGML_ASSERT(false && "Unknown image preprocessing type");
3513
3514
3515
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
3516
    return ctx->model.image_newline;
3517
3518
3519
}

void clip_free(clip_ctx * ctx) {
3520
3521
3522
    if (ctx == nullptr) {
        return;
    }
3523
3524
3525
    delete ctx;
}

3526
// deprecated
3527
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
3528
3529
    const int32_t nx = ctx->model.hparams.image_size;
    const int32_t ny = ctx->model.hparams.image_size;
3530
    return clip_embd_nbytes_by_img(ctx, nx, ny);
3531
3532
}

3533
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
3534
3535
3536
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
3537
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
3538
3539
}

3540
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
3541
    return ctx->model.hparams.image_size;
3542
3543
}

3544
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
3545
    return ctx->model.hparams.patch_size;
3546
3547
}

3548
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
3549
    return ctx->model.hparams.n_embd;
3550
3551
3552
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
3553
    return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
3554
3555
3556
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3557
    const auto & params = ctx->model.hparams;
3558
    const int n_total = clip_n_output_tokens(ctx, img);
3559
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3560
3561
3562
3563
3564
3565
        return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3566
3567
    const auto & params = ctx->model.hparams;
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3568
3569
3570
3571
3572
3573
        return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3574
    const auto & params = ctx->model.hparams;
3575

3576
3577
    // only for models using fixed size square images
    int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
3578

3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
    projector_type proj = ctx->proj_type();

    switch (proj) {
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_GLM_EDGE:
            {
                n_patches_sq /= 4;
                if (ctx->model.mm_glm_tok_boi) {
                    n_patches_sq += 2; // for BOI and EOI token embeddings
                }
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                if (params.minicpmv_version == 2) {
                    // MiniCPM-V 2.5
                    n_patches_sq = 96;
                } else if (params.minicpmv_version == 3) {
                    // MiniCPM-V 2.6
                    n_patches_sq = 64;
                } else if (params.minicpmv_version == 4) {
                    // MiniCPM-o 2.6
                    n_patches_sq = 64;
                } else if (params.minicpmv_version == 5) {
                    // MiniCPM-V 4.0
                    n_patches_sq = 64;
                } else {
                    GGML_ABORT("Unknown minicpmv version");
                }
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            {
                // dynamic size
                int patch_size = params.patch_size * 2;
                int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
                int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
                n_patches_sq = x_patch * y_patch;
            } break;
        case PROJECTOR_TYPE_GEMMA3:
            {
                int n_per_side = params.image_size / params.patch_size;
                int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
                n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool;
            } break;
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
            {
                // both W and H are divided by proj_scale_factor
                n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                // dynamic size
                int n_merge = params.spatial_merge_size;
                int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
                int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
                n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
            } break;
        case PROJECTOR_TYPE_LLAMA4:
            {
                int scale_factor = ctx->model.hparams.proj_scale_factor;
                n_patches_sq /= (scale_factor * scale_factor);
            } break;
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_QWEN2A:
            {
                n_patches_sq = img->nx;

                const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
                if (ctx->model.audio_has_stack_frames()) {
                    GGML_ASSERT(proj_stack_factor > 0);
                    const int n_len = CLIP_ALIGN(n_patches_sq, proj_stack_factor);
                    n_patches_sq = n_len / proj_stack_factor;
                }

                // whisper downscales input token by half after conv1d
                n_patches_sq /= 2;

                if (ctx->model.audio_has_avgpool()) {
                    // divide by 2 because of nn.AvgPool1d(2, stride=2)
                    n_patches_sq /= 2;
                }
            } break;
        default:
            GGML_ABORT("unsupported projector type");
    }

    return n_patches_sq;
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
3763
3764
3765
3766
3767
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

3768
3769
3770
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

3771
3772
3773
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
3774

3775
3776
3777
3778
    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
3779
    }
3780
3781

    // build the inference graph
3782
    ctx->debug_print_tensors.clear();
3783
    ggml_backend_sched_reset(ctx->sched.get());
3784
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
3785
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
3786
3787

    // set inputs
3788
    const auto & model   = ctx->model;
3789
3790
    const auto & hparams = model.hparams;

3791
3792
3793
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

3794
3795
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
3796
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
3797
3798
    const int pos_w = image_size_width  / patch_size;
    const int pos_h = image_size_height / patch_size;
3799

3800
3801
3802
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
3803
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
3828
    if (!imgs.is_audio) {
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
3845

3846
3847
3848
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
3849
3850
3851
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
3852
3853
3854
3855
3856
3857
3858
3859
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
3860
3861
3862
3863
                    }
                }
            }
        }
3864
        set_input_f32("inp_raw", inp_raw);
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874

    } else {
        // audio input
        GGML_ASSERT(imgs.entries.size() == 1);
        const auto & mel_inp = imgs.entries[0];
        const int n_step = mel_inp->nx;
        const int n_mel  = mel_inp->ny;
        std::vector<float> inp_raw(n_step * n_mel);
        std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
        set_input_f32("inp_raw", inp_raw);
3875
3876
    }

3877
    // set input per projector
3878
    switch (ctx->model.proj_type) {
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
3889
                }
3890
3891
3892
3893
3894
3895
3896
3897
3898
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
3899

3900
3901
3902
3903
                // inspired from resampler of Qwen-VL:
                //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
                //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
                int embed_dim = clip_n_mmproj_embd(ctx);
3904

3905
3906
                // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
                auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
3907

3908
3909
3910
3911
3912
3913
                std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
                for(int i = 0; i < pos_w * pos_h; ++i){
                    for(int j = 0; j < embed_dim; ++j){
                        pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
                    }
                }
3914

3915
3916
3917
3918
3919
3920
3921
                set_input_f32("pos_embed", pos_embed);
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
            {
                const int merge_ratio = 2;
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
3922
                std::vector<int> positions(n_pos * 4);
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
3937

3938
3939
3940
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
3941
            {
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
3986
3987
                        }
                    }
3988
3989
3990
3991
3992
3993
3994
3995

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
3996
3997
                }

3998
                const int mpow = merge_ratio * merge_ratio;
3999
                std::vector<int> positions(n_pos * 4);
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4018

4019
4020
4021
4022
4023
4024
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
4025
                std::vector<int> pos_data(n_pos);
4026
                // dimension H
4027
                for (int i = 0; i < n_pos; i++) {
4028
4029
4030
4031
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
4032
                for (int i = 0; i < n_pos; i++) {
4033
4034
4035
4036
4037
4038
4039
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
4040
4041
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
4042
                positions[i] = i;
4043
            }
4044
4045
4046
4047
4048
4049
4050
4051
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
4052
4053
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
4054
4055
4056
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
4057

4058
4059
4060
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
4061
                int patch_offset = model.class_embedding ? 1 : 0;
4062
                std::vector<int32_t> patches(num_patches);
4063
                for (int i = 0; i < num_patches; i++) {
4064
                    patches[i] = i + patch_offset;
4065
                }
4066
4067
4068
4069
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
4070
        case PROJECTOR_TYPE_INTERNVL:
4071
4072
4073
        case PROJECTOR_TYPE_QWEN2A:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
4074
4075
4076
            {
                // do nothing
            } break;
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
        case PROJECTOR_TYPE_LLAMA4:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
                // last pos is always kept 0, it's for CLS
                // dimension H
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i / n_patches_per_col) + 1;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i % n_patches_per_col) + 1;
                }
                set_input_i32("pos_w", pos_data);
            } break;
4094
4095
        default:
            GGML_ABORT("Unknown projector type");
4096
4097
    }

4098
4099
4100
4101
4102
4103
4104
4105
4106
    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }
4107

4108
4109
4110
4111
4112
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
4113

4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
    // print debug nodes
    if (ctx->debug_graph) {
        LOG_INF("\n\n---\n\n");
        LOG_INF("\n\nDebug graph:\n\n");
        for (ggml_tensor * t : ctx->debug_print_tensors) {
            std::vector<uint8_t> data(ggml_nbytes(t));
            ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
            print_tensor_shape(t);
            print_tensor_data(t, data.data(), 3);
        }
    }

4126
    // the last node is the embedding tensor
4127
4128
4129
4130
4131
4132
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
4133
        LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
4134
4135
        GGML_ABORT("Invalid number of output tokens");
    }
4136
4137
4138
4139
4140
4141
4142
4143

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
4144
4145
    const auto & hparams = ctx->model.hparams;
    switch (ctx->model.proj_type) {
4146
        case PROJECTOR_TYPE_LDP:
4147
            return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
4148
        case PROJECTOR_TYPE_LDPV2:
4149
            return ctx->model.mm_model_peg_0_b->ne[0];
4150
4151
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
4152
            return ctx->model.mm_2_w->ne[1];
4153
        case PROJECTOR_TYPE_MLP_NORM:
4154
            return ctx->model.mm_3_b->ne[0];
4155
        case PROJECTOR_TYPE_MINICPMV:
4156
4157
            if (hparams.minicpmv_version == 2) {
                // MiniCPM-V 2.5
4158
                return 4096;
4159
4160
            } else if (hparams.minicpmv_version == 3) {
                // MiniCPM-V 2.6
4161
                return 3584;
4162
4163
            } else if (hparams.minicpmv_version == 4) {
                // MiniCPM-o 2.6
4164
                return 3584;
4165
4166
4167
            } else if (hparams.minicpmv_version == 5) {
                // MiniCPM-V 4.0
                return 2560;
4168
4169
4170
            }
            GGML_ABORT("Unknown minicpmv version");
        case PROJECTOR_TYPE_GLM_EDGE:
4171
            return ctx->model.mm_model_mlp_3_w->ne[1];
4172
4173
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
4174
            return ctx->model.mm_1_b->ne[0];
4175
        case PROJECTOR_TYPE_GEMMA3:
4176
            return ctx->model.mm_input_proj_w->ne[0];
4177
        case PROJECTOR_TYPE_IDEFICS3:
4178
4179
4180
4181
            return ctx->model.projection->ne[1];
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
            return ctx->model.mm_2_w->ne[1];
4182
        case PROJECTOR_TYPE_INTERNVL:
4183
4184
4185
4186
4187
            return ctx->model.mm_3_w->ne[1];
        case PROJECTOR_TYPE_LLAMA4:
            return ctx->model.mm_model_proj->ne[1];
        case PROJECTOR_TYPE_QWEN2A:
            return ctx->model.mm_fc_w->ne[1];
4188
4189
        default:
            GGML_ABORT("Unknown projector type");
4190
    }
4191
4192
4193
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
4194
4195
    if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
        return ctx->model.hparams.minicpmv_version;
4196
4197
4198
    }
    return 0;
}
4199

4200
bool clip_is_glm(const struct clip_ctx * ctx) {
4201
    return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
4202
}
4203

4204
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
4205
4206
    return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
4207
4208
}

4209
bool clip_is_llava(const struct clip_ctx * ctx) {
4210
    return ctx->model.hparams.has_llava_projector;
4211
4212
4213
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
    return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}

bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_VISION;
}

bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_AUDIO;
}

bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
        || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
4229
4230
}

4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
4243
4244
4245
4246
4247
4248

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
    return ctx->proj_type();
}

void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
    clip_image_f32 * audio = new clip_image_f32;
    audio->nx = n_frames;
    audio->ny = n_mel;
    audio->buf.resize(n_frames * n_mel);
    std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));

    batch->entries.push_back(clip_image_f32_ptr(audio));
    batch->is_audio = true;
4261
}