server.go 55.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package llm

import (
	"bufio"
	"bytes"
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	"log"
	"log/slog"
	"math/rand"
	"net"
	"net/http"
	"os"
	"os/exec"
	"path/filepath"
	"runtime"
20
	"slices"
Jesse Gross's avatar
Jesse Gross committed
21
	"sort"
22
23
	"strconv"
	"strings"
24
	"sync"
25
26
	"time"

Daniel Hiltgen's avatar
Daniel Hiltgen committed
27
28
	"golang.org/x/sync/semaphore"

29
	"github.com/ollama/ollama/api"
30
	"github.com/ollama/ollama/envconfig"
31
	"github.com/ollama/ollama/format"
Michael Yang's avatar
Michael Yang committed
32
	"github.com/ollama/ollama/fs/ggml"
33
	"github.com/ollama/ollama/llama"
34
	"github.com/ollama/ollama/logutil"
Jesse Gross's avatar
Jesse Gross committed
35
	"github.com/ollama/ollama/ml"
36
	"github.com/ollama/ollama/model"
37
38
)

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
type filteredEnv []string

func (e filteredEnv) LogValue() slog.Value {
	var attrs []slog.Attr
	for _, env := range e {
		if key, value, ok := strings.Cut(env, "="); ok {
			switch {
			case strings.HasPrefix(key, "OLLAMA_"),
				strings.HasPrefix(key, "CUDA_"),
				strings.HasPrefix(key, "ROCR_"),
				strings.HasPrefix(key, "ROCM_"),
				strings.HasPrefix(key, "HIP_"),
				strings.HasPrefix(key, "GPU_"),
				strings.HasPrefix(key, "HSA_"),
				strings.HasPrefix(key, "GGML_"),
				slices.Contains([]string{
					"PATH",
					"LD_LIBRARY_PATH",
					"DYLD_LIBRARY_PATH",
				}, key):
				attrs = append(attrs, slog.String(key, value))
			}
		}
	}
	return slog.GroupValue(attrs...)
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
66
type LlamaServer interface {
Jesse Gross's avatar
Jesse Gross committed
67
	ModelPath() string
68
	Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
70
71
	Ping(ctx context.Context) error
	WaitUntilRunning(ctx context.Context) error
	Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
72
	Embedding(ctx context.Context, input string) ([]float32, int, error)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
73
74
75
	Tokenize(ctx context.Context, content string) ([]int, error)
	Detokenize(ctx context.Context, tokens []int) (string, error)
	Close() error
Jesse Gross's avatar
Jesse Gross committed
76
77
	VRAMSize() uint64 // Total VRAM across all GPUs
	TotalSize() uint64
78
	VRAMByGPU(id ml.DeviceID) uint64
79
	Pid() int
80
81
82
	GetPort() int
	GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
	HasExited() bool
Daniel Hiltgen's avatar
Daniel Hiltgen committed
83
84
}

Jesse Gross's avatar
Jesse Gross committed
85
// llmServer is an instance of a runner hosting a single model
Daniel Hiltgen's avatar
Daniel Hiltgen committed
86
type llmServer struct {
87
88
89
90
91
92
	port      int
	cmd       *exec.Cmd
	done      chan error // Channel to signal when the process exits
	status    *StatusWriter
	options   api.Options
	modelPath string
93

94
95
	loadRequest LoadRequest       // Parameters used to initialize the runner
	mem         *ml.BackendMemory // Memory allocations for this model
Jesse Gross's avatar
Jesse Gross committed
96

97
98
99
	// llamaModel is an instance of the cgo llama.cpp model definition
	// nil if this server is running the new engine
	llamaModel     *llama.Model
Jesse Gross's avatar
Jesse Gross committed
100
	llamaModelLock *sync.Mutex
101

Jesse Gross's avatar
Jesse Gross committed
102
103
	totalLayers  uint64
	loadStart    time.Time // Record how long it took the model to load
104
	loadProgress float32
Daniel Hiltgen's avatar
Daniel Hiltgen committed
105
106

	sem *semaphore.Weighted
107
108
}

Jesse Gross's avatar
Jesse Gross committed
109
110
111
type llamaServer struct {
	llmServer

112
	ggml *ggml.GGML
Jesse Gross's avatar
Jesse Gross committed
113
114
115
116
}

type ollamaServer struct {
	llmServer
117
118

	textProcessor model.TextProcessor // textProcessor handles text encoding/decoding
Jesse Gross's avatar
Jesse Gross committed
119
120
}

121
122
123
124
125
// LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
Michael Yang's avatar
Michael Yang committed
126
func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
127
128
129
130
	if _, err := os.Stat(model); err != nil {
		return nil, err
	}

131
132
133
134
135
136
	f, err := os.Open(model)
	if err != nil {
		return nil, err
	}
	defer f.Close()

137
	ggml, err := ggml.Decode(f, maxArraySize)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
138
139
	return ggml, err
}
140

Daniel Hiltgen's avatar
Daniel Hiltgen committed
141
// NewLlamaServer will run a server for the given GPUs
142
func NewLlamaServer(systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, modelPath string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
Jesse Gross's avatar
Jesse Gross committed
143
144
145
	var llamaModel *llama.Model
	var textProcessor model.TextProcessor
	var err error
146
	if envconfig.NewEngine() || f.KV().OllamaEngineRequired() {
147
148
149
150
151
		if len(projectors) == 0 {
			textProcessor, err = model.NewTextProcessor(modelPath)
		} else {
			err = errors.New("split vision models aren't supported")
		}
Jesse Gross's avatar
Jesse Gross committed
152
153
154
155
		if err != nil {
			// To prepare for opt-out mode, instead of treating this as an error, we fallback to the old runner
			slog.Debug("model not yet supported by Ollama engine, switching to compatibility mode", "model", modelPath, "error", err)
		}
156
	}
Jesse Gross's avatar
Jesse Gross committed
157
158
159
160
161
	if textProcessor == nil {
		llamaModel, err = llama.LoadModelFromFile(modelPath, llama.ModelParams{VocabOnly: true})
		if err != nil {
			return nil, err
		}
162
163
	}

Jesse Gross's avatar
Jesse Gross committed
164
165
166
167
168
	// Verify the requested context size is <= the model training size
	trainCtx := f.KV().ContextLength()
	if opts.NumCtx > int(trainCtx) && trainCtx > 0 {
		slog.Warn("requested context size too large for model", "num_ctx", opts.NumCtx, "n_ctx_train", trainCtx)
		opts.NumCtx = int(trainCtx)
169
170
	}

171
172
	opts.NumBatch = min(opts.NumBatch, opts.NumCtx)

Jesse Gross's avatar
Jesse Gross committed
173
	loadRequest := LoadRequest{LoraPath: adapters, KvSize: opts.NumCtx * numParallel, BatchSize: opts.NumBatch, Parallel: numParallel, MultiUserCache: envconfig.MultiUserCache()}
174

175
	defaultThreads := systemInfo.ThreadCount
Jesse Gross's avatar
Jesse Gross committed
176
177
178
179
	if opts.NumThread > 0 {
		loadRequest.NumThreads = opts.NumThread
	} else if defaultThreads > 0 {
		loadRequest.NumThreads = defaultThreads
180
	}
Michael Yang's avatar
Michael Yang committed
181

Jesse Gross's avatar
Jesse Gross committed
182
	// TODO - NUMA support currently doesn't work properly
183
184

	if opts.MainGPU > 0 {
Jesse Gross's avatar
Jesse Gross committed
185
		loadRequest.MainGPU = opts.MainGPU
186
187
	}

Jesse Gross's avatar
Jesse Gross committed
188
189
	if len(projectors) > 0 && llamaModel != nil {
		loadRequest.ProjectorPath = projectors[0]
190
	}
191
192
193
194
195
	// Determine if the user has forced FA on or off
	faUserSet := false
	if envconfig.FlashAttention(true) == envconfig.FlashAttention(false) {
		faUserSet = true
	}
196

197
198
	fa := envconfig.FlashAttention(f.FlashAttention())

Jesse Gross's avatar
Jesse Gross committed
199
200
	// This will disable flash attention unless all GPUs on the system support it, even if we end up selecting a subset
	// that can handle it.
201
	if fa && !ml.FlashAttentionSupported(gpus) {
202
203
204
		slog.Warn("flash attention enabled but not supported by gpu")
		fa = false
	}
Sam's avatar
Sam committed
205

Michael Yang's avatar
Michael Yang committed
206
	if fa && !f.SupportsFlashAttention() {
207
208
209
210
		slog.Warn("flash attention enabled but not supported by model")
		fa = false
	}

211
	kvct := strings.ToLower(envconfig.KvCacheType())
212

213
214
215
216
217
218
219
220
221
	if textProcessor == nil {
		flashAttention := ml.FlashAttentionAuto
		if faUserSet {
			if fa {
				flashAttention = ml.FlashAttentionEnabled
			} else {
				flashAttention = ml.FlashAttentionDisabled
			}
		}
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
		if kvct != "" {
			if f.KVCacheTypeIsQuantized(kvct) {
				if flashAttention != ml.FlashAttentionEnabled {
					slog.Warn("OLLAMA_FLASH_ATTENTION must be enabled to use a quantized OLLAMA_KV_CACHE_TYPE", "type", kvct)
					loadRequest.KvCacheType = ""
				} else if f.SupportsKVCacheType(kvct) {
					loadRequest.KvCacheType = kvct
				} else {
					slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
				}
			} else {
				if f.SupportsKVCacheType(kvct) {
					loadRequest.KvCacheType = kvct
				} else {
					slog.Warn("unsupported OLLAMA_KV_CACHE_TYPE", "type", kvct)
				}
			}
		}
		loadRequest.FlashAttention = flashAttention
	} else {
		// For Ollama engine, use our SupportsFlashAttention logic
		if fa {
			slog.Info("enabling flash attention")
			loadRequest.FlashAttention = ml.FlashAttentionEnabled

			// Flash Attention also supports kv cache quantization
			// Enable if the requested and kv cache type is supported by the model
			if f.SupportsKVCacheType(kvct) {
				loadRequest.KvCacheType = kvct
			} else {
				slog.Warn("kv cache type not supported by model", "type", kvct)
			}
		} else if kvct != "" && kvct != "f16" {
			slog.Warn("quantized kv cache requested but flash attention disabled", "type", kvct)
Sam's avatar
Sam committed
257
		}
258
	}
259

260
261
262
263
264
265
266
	gpuLibs := ml.LibraryPaths(gpus)
	status := NewStatusWriter(os.Stderr)
	cmd, port, err := StartRunner(
		textProcessor != nil,
		modelPath,
		gpuLibs,
		status,
267
		ml.GetVisibleDevicesEnv(gpus, false),
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
	)

	s := llmServer{
		port:           port,
		cmd:            cmd,
		status:         status,
		options:        opts,
		modelPath:      modelPath,
		loadRequest:    loadRequest,
		llamaModel:     llamaModel,
		llamaModelLock: &sync.Mutex{},
		sem:            semaphore.NewWeighted(int64(numParallel)),
		totalLayers:    f.KV().BlockCount() + 1,
		loadStart:      time.Now(),
		done:           make(chan error, 1),
Jesse Gross's avatar
Jesse Gross committed
283
284
	}

285
286
287
288
289
290
291
292
293
294
	if err != nil {
		var msg string
		if s.status != nil && s.status.LastErrMsg != "" {
			msg = s.status.LastErrMsg
		}
		err := fmt.Errorf("error starting runner: %v %s", err, msg)
		if llamaModel != nil {
			llama.FreeModel(llamaModel)
		}
		return nil, err
Michael Yang's avatar
Michael Yang committed
295
296
	}

297
298
299
300
301
302
303
304
	// reap subprocess when it exits
	go func() {
		err := s.cmd.Wait()
		// Favor a more detailed message over the process exit status
		if err != nil && s.status != nil && s.status.LastErrMsg != "" {
			slog.Error("llama runner terminated", "error", err)
			if strings.Contains(s.status.LastErrMsg, "unknown model") {
				s.status.LastErrMsg = "this model is not supported by your version of Ollama. You may need to upgrade"
Jesse Gross's avatar
Jesse Gross committed
305
			}
306
307
308
			s.done <- errors.New(s.status.LastErrMsg)
		} else {
			s.done <- err
309
		}
310
	}()
311

312
	if textProcessor != nil {
313
		return &ollamaServer{llmServer: s, textProcessor: textProcessor}, nil
314
315
	} else {
		return &llamaServer{llmServer: s, ggml: f}, nil
Michael Yang's avatar
Michael Yang committed
316
	}
317
}
Jesse Gross's avatar
Jesse Gross committed
318

319
320
321
func StartRunner(ollamaEngine bool, modelPath string, gpuLibs []string, out io.Writer, extraEnvs map[string]string) (cmd *exec.Cmd, port int, err error) {
	var exe string
	exe, err = os.Executable()
322
	if err != nil {
323
		return nil, 0, fmt.Errorf("unable to lookup executable path: %w", err)
324
325
326
327
328
329
	}

	if eval, err := filepath.EvalSymlinks(exe); err == nil {
		exe = eval
	}

330
331
332
333
334
335
	port = 0
	if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
		var l *net.TCPListener
		if l, err = net.ListenTCP("tcp", a); err == nil {
			port = l.Addr().(*net.TCPAddr).Port
			l.Close()
Jesse Gross's avatar
Jesse Gross committed
336
		}
337
338
339
340
341
342
343
344
345
346
	}
	if port == 0 {
		slog.Debug("ResolveTCPAddr failed, using random port")
		port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
	}
	params := []string{"runner"}
	if ollamaEngine {
		params = append(params, "--ollama-engine")
	}
	if modelPath != "" {
Jesse Gross's avatar
Jesse Gross committed
347
		params = append(params, "--model", modelPath)
348
349
	}
	params = append(params, "--port", strconv.Itoa(port))
Daniel Hiltgen's avatar
Daniel Hiltgen committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
	var pathEnv string
	switch runtime.GOOS {
	case "windows":
		pathEnv = "PATH"
	case "darwin":
		pathEnv = "DYLD_LIBRARY_PATH"
	default:
		pathEnv = "LD_LIBRARY_PATH"
	}

	// Note: we always put our dependency paths first
	// since these are the exact version we compiled/linked against
	libraryPaths := append([]string{}, gpuLibs...)
	if libraryPath, ok := os.LookupEnv(pathEnv); ok {
		libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
	}

	cmd = exec.Command(exe, params...)

	cmd.Env = os.Environ()
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

	if out != nil {
		stdout, err := cmd.StdoutPipe()
		if err != nil {
			return nil, 0, fmt.Errorf("failed to spawn server stdout pipe: %w", err)
		}
		stderr, err := cmd.StderrPipe()
		if err != nil {
			return nil, 0, fmt.Errorf("failed to spawn server stderr pipe: %w", err)
		}
		go func() {
			io.Copy(out, stdout) //nolint:errcheck
		}()
		go func() {
			io.Copy(out, stderr) //nolint:errcheck
		}()
	}
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
	cmd.SysProcAttr = LlamaServerSysProcAttr

	// Always filter down the set of GPUs in case there are any unsupported devices that might crash
	pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))

	// Update or add the path variable with our adjusted version
	pathNeeded := true
	ollamaPathNeeded := true
	extraEnvsDone := map[string]bool{}
	for k := range extraEnvs {
		extraEnvsDone[k] = false
	}
	for i := range cmd.Env {
		cmp := strings.SplitN(cmd.Env[i], "=", 2)
		if strings.EqualFold(cmp[0], pathEnv) {
			cmd.Env[i] = pathEnv + "=" + pathEnvVal
			pathNeeded = false
		} else if strings.EqualFold(cmp[0], "OLLAMA_LIBRARY_PATH") {
			cmd.Env[i] = "OLLAMA_LIBRARY_PATH=" + strings.Join(gpuLibs, string(filepath.ListSeparator))
			ollamaPathNeeded = false
		} else if len(extraEnvs) != 0 {
			for k, v := range extraEnvs {
				if strings.EqualFold(cmp[0], k) {
					cmd.Env[i] = k + "=" + v
					extraEnvsDone[k] = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
413
				}
414
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
415
		}
416
417
418
419
420
421
422
423
424
425
	}
	if pathNeeded {
		cmd.Env = append(cmd.Env, pathEnv+"="+pathEnvVal)
	}
	if ollamaPathNeeded {
		cmd.Env = append(cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(gpuLibs, string(filepath.ListSeparator)))
	}
	for k, done := range extraEnvsDone {
		if !done {
			cmd.Env = append(cmd.Env, k+"="+extraEnvs[k])
426
		}
427
	}
428

429
430
	slog.Info("starting runner", "cmd", cmd)
	slog.Debug("subprocess", "", filteredEnv(cmd.Env))
Daniel Hiltgen's avatar
Daniel Hiltgen committed
431

432
433
	if err = cmd.Start(); err != nil {
		return nil, 0, err
Jesse Gross's avatar
Jesse Gross committed
434
	}
435
436
	err = nil
	return
Jesse Gross's avatar
Jesse Gross committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
}

func (s *llmServer) ModelPath() string {
	return s.modelPath
}

type LoadOperation int

// The order of these constants are significant because we iterate over the operations. They
// should be in order of increasingly loading the model.
const (
	LoadOperationFit    LoadOperation = iota // Return memory requirements but do not allocate
	LoadOperationAlloc                       // Allocate memory but do not load the weights
	LoadOperationCommit                      // Load weights - further changes cannot be made after this
	LoadOperationClose                       // Close model and free memory
)

func (o LoadOperation) String() string {
	switch o {
	case LoadOperationFit:
		return "fit"
	case LoadOperationAlloc:
		return "alloc"
	case LoadOperationCommit:
		return "commit"
	case LoadOperationClose:
		return "close"
	default:
		return "unknown"
	}
}

type LoadRequest struct {
	Operation LoadOperation

	LoraPath       []string
	Parallel       int
	BatchSize      int
475
	FlashAttention ml.FlashAttentionType
Jesse Gross's avatar
Jesse Gross committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
	KvSize         int
	KvCacheType    string
	NumThreads     int
	GPULayers      ml.GPULayersList
	MultiUserCache bool

	// Legacy fields - not used with the Ollama engine
	ProjectorPath string
	MainGPU       int
	UseMmap       bool
}

type LoadResponse struct {
	Success bool
	Memory  ml.BackendMemory
}

var ErrLoadRequiredFull = errors.New("unable to load full model on GPU")

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
func (s *llamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
	slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)

	gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)

	// Synthesize memory allocation information based on our estimates
	s.mem = &ml.BackendMemory{CPU: ml.DeviceMemory{
		Name:    "CPU",
		Weights: make([]uint64, s.totalLayers),
		Cache:   make([]uint64, s.totalLayers),
	}, GPUs: make([]ml.DeviceMemory, len(gpus))}

	for i := range s.mem.GPUs {
		s.mem.GPUs[i].Name = gpus[i].Name
		s.mem.GPUs[i].DeviceID = gpus[i].DeviceID
		s.mem.GPUs[i].Weights = make([]uint64, s.totalLayers)
		s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
	}
Jesse Gross's avatar
Jesse Gross committed
513

514
515
516
517
518
519
520
	// Check if embedding model and adjust batch size accordingly
	_, isEmbedding := s.ggml.KV()[fmt.Sprintf("%s.pooling_type", s.ggml.KV().Architecture())]
	if isEmbedding && s.loadRequest.BatchSize < s.options.NumCtx {
		s.loadRequest.BatchSize = s.options.NumCtx
		slog.Info("embedding model detected, setting batch size to context length", "batch_size", s.loadRequest.BatchSize)
	}

521
522
523
524
525
526
	kv, graphPartialOffload, graphFullOffload := s.ggml.GraphSize(uint64(s.options.NumCtx), uint64(s.loadRequest.BatchSize),
		s.loadRequest.Parallel, s.loadRequest.KvCacheType, s.loadRequest.FlashAttention)

	// Use the size of one layer as a buffer
	layers := s.ggml.Tensors().GroupLayers()
	if blk0, ok := layers["blk.0"]; ok {
527
		buffer := blk0.Size() + kv[0]
528
		for i := range gpus {
529
530
531
532
533
			if gpus[i].FreeMemory > buffer {
				gpus[i].FreeMemory -= buffer
			} else {
				gpus[i].FreeMemory = 0
			}
534
535
		}
	} else {
536
537
538
539
540
541
542
543
		slog.Warn("model missing blk.0 layer size")
	}

	// Assign all the layers to the CPU for now, they will get reassigned later
	for i := range s.ggml.KV().BlockCount() {
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
			s.mem.CPU.Weights[i] = blk.Size()
			s.mem.CPU.Cache[i] += kv[i]
Jesse Gross's avatar
Jesse Gross committed
544
545
546
		}
	}

547
548
549
550
551
552
553
554
555
556
557
	// We historically haven't included InputWeights in the model size
	var outputWeights uint64
	if layer, ok := layers["output_norm"]; ok {
		outputWeights += layer.Size()
	}
	if layer, ok := layers["output"]; ok {
		outputWeights += layer.Size()
	} else if layer, ok := layers["token_embd"]; ok {
		outputWeights += layer.Size()
	}
	s.mem.CPU.Weights[s.totalLayers-1] = outputWeights
Jesse Gross's avatar
Jesse Gross committed
558

559
560
561
562
563
564
565
	// The vision projector is always loaded on the first GPU if available.
	// This can't be assigned by us, so just subtract it from free space
	projectorGPU := -1
	var projectorWeights uint64
	if len(gpus) > 0 {
		for _, projector := range s.loadRequest.LoraPath {
			projectorWeights += projectorMemoryRequirements(projector)
Jesse Gross's avatar
Jesse Gross committed
566
		}
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

		// llama.cpp uses the first discrete GPU if available, otherwise the first iGPU
		firstIntegrated := -1
		for i := range gpus {
			if !gpus[i].Integrated {
				projectorGPU = i
				break
			}
			if firstIntegrated == -1 {
				firstIntegrated = i
			}
		}
		if projectorGPU == -1 {
			projectorGPU = firstIntegrated
		}

583
584
585
586
587
		if gpus[projectorGPU].FreeMemory > projectorWeights {
			gpus[projectorGPU].FreeMemory -= projectorWeights
		} else {
			gpus[projectorGPU].FreeMemory = 0
		}
Jesse Gross's avatar
Jesse Gross committed
588
589
	}

590
591
592
593
594
595
596
597
598
	var kvTotal uint64
	for _, kvLayer := range kv {
		kvTotal += kvLayer
	}

	if graphPartialOffload == 0 {
		headsKV := s.ggml.KV().HeadCountKVMin()
		if headsKV == 0 {
			headsKV = 1
Jesse Gross's avatar
Jesse Gross committed
599
		}
600
601
602
603
604
		gqa := s.ggml.KV().HeadCountMax() / headsKV
		graphPartialOffload = gqa * kvTotal / 6
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
Jesse Gross's avatar
Jesse Gross committed
605
606
	}

607
608
609
610
	// On Metal there's no partial offload overhead
	if len(gpus) > 0 && gpus[0].Library == "Metal" {
		graphPartialOffload = graphFullOffload
	}
Jesse Gross's avatar
Jesse Gross committed
611

612
613
614
615
616
	// Create a layout based on the memory data that we've built. The compute graph
	// for GPUs is iteratively assigned based on the number of GPUs that are required.
	var gpuLayers ml.GPULayersList
	for {
		prevGPULayers := gpuLayers
Jesse Gross's avatar
Jesse Gross committed
617

618
619
620
621
622
		var err error
		gpuLayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, 0)
		if err != nil {
			return nil, err
		}
Jesse Gross's avatar
Jesse Gross committed
623

624
625
626
627
628
629
630
631
		if len(gpuLayers) > len(prevGPULayers) {
			for _, gl := range gpuLayers {
				for i := range s.mem.GPUs {
					if gl.DeviceID == s.mem.GPUs[i].DeviceID {
						s.mem.GPUs[i].Graph = max(graphPartialOffload, graphFullOffload)
						break
					}
				}
Jesse Gross's avatar
Jesse Gross committed
632
			}
633
634
		} else {
			break
Jesse Gross's avatar
Jesse Gross committed
635
		}
636
637
638
639
640
641
642
	}

	// This maintains the historical assignment of graph sizes, though it isn't fully accurate
	graphSize := graphFullOffload
	if gpuLayers.Sum() < int(s.totalLayers) {
		graphSize = graphPartialOffload
	}
Jesse Gross's avatar
Jesse Gross committed
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
	// For all layers that we have assigned to GPUs, move them in the memory data so
	// that it is reported accurately
	for _, gl := range gpuLayers {
		for i := range s.mem.GPUs {
			if gl.DeviceID == s.mem.GPUs[i].DeviceID {
				for _, l := range gl.Layers {
					s.mem.GPUs[i].Weights[l] = s.mem.CPU.Weights[l]
					s.mem.GPUs[i].Cache[l] = s.mem.CPU.Cache[l]

					s.mem.CPU.Weights[l] = 0
					s.mem.CPU.Cache[l] = 0
				}

				s.mem.GPUs[i].Graph = graphSize
				break
			}
Jesse Gross's avatar
Jesse Gross committed
660
661
662
		}
	}

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
	if projectorGPU > 0 && len(s.mem.GPUs[projectorGPU].Weights) > 0 {
		s.mem.GPUs[projectorGPU].Weights[s.totalLayers-1] += projectorWeights
	}

	slog.Debug("memory", "estimate", s.mem)
	s.mem.Log(slog.LevelInfo)

	// The llama engine uses mmap by default
	s.loadRequest.UseMmap = true

	// mmap has issues with partial offloading on metal
	for _, g := range gpus {
		if g.Library == "Metal" &&
			uint64(s.options.NumGPU) > 0 &&
			uint64(s.options.NumGPU) < s.totalLayers {
			s.options.UseMMap = new(bool)
			*s.options.UseMMap = false
		}
	}

	// Windows CUDA should not use mmap for best performance
	// Linux  with a model larger than free space, mmap leads to thrashing
	// For CPU loads we want the memory to be allocated, not FS cache
	if (runtime.GOOS == "windows" && len(gpus) > 0 && gpus[0].Library == "CUDA" && s.options.UseMMap == nil) ||
		(runtime.GOOS == "linux" && systemInfo.FreeMemory < s.TotalSize() && s.options.UseMMap == nil) ||
		(len(gpus) == 0 && s.options.UseMMap == nil) ||
		(len(gpus) > 0 && gpus[0].Library == "Vulkan" && s.options.UseMMap == nil) ||
		(s.options.UseMMap != nil && !*s.options.UseMMap) {
		s.loadRequest.UseMmap = false
	}

Jesse Gross's avatar
Jesse Gross committed
694
	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
695
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
696
697
	}

698
	s.loadRequest.GPULayers = gpuLayers
Jesse Gross's avatar
Jesse Gross committed
699
700
	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
701
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
702
703
704
	}

	if !resp.Success {
705
		return nil, errors.New("failed to allocate memory for model")
Jesse Gross's avatar
Jesse Gross committed
706
707
708
709
710
	}

	// The llama engine does its memory allocations together with model loading, so we
	// need to wait until it is done to ensure that we have accurate memory data before
	// loading the next model
711
	return uniqueDeviceIDs(s.loadRequest.GPULayers), s.WaitUntilRunning(ctx)
Jesse Gross's avatar
Jesse Gross committed
712
713
}

714
715
716
717
func projectorMemoryRequirements(filename string) (weights uint64) {
	file, err := os.Open(filename)
	if err != nil {
		return 0
Jesse Gross's avatar
Jesse Gross committed
718
	}
719
	defer file.Close()
Jesse Gross's avatar
Jesse Gross committed
720

721
722
723
	ggml, err := ggml.Decode(file, 1024)
	if err != nil {
		return 0
Jesse Gross's avatar
Jesse Gross committed
724
725
	}

726
727
	for _, layer := range ggml.Tensors().GroupLayers() {
		weights += layer.Size()
Jesse Gross's avatar
Jesse Gross committed
728
729
	}

730
	return weights
Jesse Gross's avatar
Jesse Gross committed
731
732
733
734
735
736
737
738
739
740
741
}

// Load finds the optimal layout of layers to offload on GPUs based on no initial information about the size of the model
// It does this by:
// 1. Assigning the full model to the GPU with the largest available free memory
// 2. Attempting to allocate the layout and receiving the memory requirements in response
// 3. Creating a new layout based on the updated memory information
// 4. Going back to step 2 and looping until we either stabilize on a particular layout or discover that we have entered a cycle
//
// This process is repeated for higher levels of loading the model (fit, allocate, commit). The earlier levels are quicker,
// allowing for faster iteration, but may return less information.
742
743
//
// Returns the list of GPU IDs that were used in the final allocation on success
744
func (s *ollamaServer) Load(ctx context.Context, systemInfo ml.SystemInfo, gpus []ml.DeviceInfo, requireFull bool) ([]ml.DeviceID, error) {
Jesse Gross's avatar
Jesse Gross committed
745
746
747
748
749
	var success bool
	defer func() {
		if !success {
			s.initModel(ctx, LoadRequest{}, LoadOperationClose)
		}
750
751
752
		if s.mem != nil {
			s.mem.Log(slog.LevelInfo)
		}
Jesse Gross's avatar
Jesse Gross committed
753
754
755
756
757
758
759
760
761
	}()

	slog.Info("loading model", "model layers", s.totalLayers, "requested", s.options.NumGPU)

	pastAllocations := make(map[uint64]struct{})
	var backoff float32

	gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
	if err != nil {
762
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
763
764
765
	}

	if err := s.waitUntilRunnerLaunched(ctx); err != nil {
766
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
767
768
769
770
771
772
773
774
775
	}

nextOperation:
	for operation := LoadOperationFit; operation < LoadOperationCommit; operation++ {
	nextLoad:
		for {
			s.loadRequest.GPULayers = gpuLayers
			resp, err := s.initModel(ctx, s.loadRequest, operation)
			if err != nil {
776
				return nil, err
Jesse Gross's avatar
Jesse Gross committed
777
778
779
780
781
782
783
784
785
786
787
			}

			resp.Memory.Log(slog.LevelDebug)
			slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

			pastAllocations[gpuLayers.Hash()] = struct{}{}
			s.mem = &resp.Memory

			for {
				newGPULayers, err := s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
				if err != nil {
788
					return nil, err
Jesse Gross's avatar
Jesse Gross committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
				}

				slog.Debug("new layout created", "layers", newGPULayers)

				// We get additional memory information over time, which will reduce the number of
				// layers that can fit, so fewer layers is actually better. As long as we haven't seen
				// this layout before and it doesn't have more layers than the last one, we can keep
				// trying to see if we can do better.
				if _, ok := pastAllocations[newGPULayers.Hash()]; !ok && newGPULayers.Sum() <= gpuLayers.Sum() {
					gpuLayers = newGPULayers
					continue nextLoad
				}

				// If we are looping around a few different layouts due to graphs moving off and on
				// GPUs, make sure that we try out the intermediate states. For example, if we are
				// looping between offloading 39 and 41 layers, we should also check 40.
				//
				// This switches strategies to force an incremental number of layers to be offloaded
				// and checking the memory layout. If the allocation succeeds and creating a new layout
				// without forcing offload yields the same or greater number of layers offloaded, then
				// the trial is successful.
				//
				// This alternate strategy does not introduce the possibility of loops with the overall
				// state machine, as it exits this code block either with a successful result, moving
				// to the next operation or the original number of layers offloaded.
				if s.options.NumGPU < 0 && newGPULayers.Sum()-gpuLayers.Sum() > 1 {
					for i := newGPULayers.Sum() - 1; i >= gpuLayers.Sum(); i-- {
						slog.Debug("exploring intermediate layers", "layer", i)

						s.options.NumGPU = i
						newGPULayers, err = s.createLayout(systemInfo, gpus, s.mem, requireFull, backoff)
						s.options.NumGPU = -1
						if err != nil {
822
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
823
824
825
826
827
828
						}
						slog.Debug("new layout created", "layers", newGPULayers)

						s.loadRequest.GPULayers = newGPULayers
						resp, err = s.initModel(ctx, s.loadRequest, operation)
						if err != nil {
829
							return nil, err
Jesse Gross's avatar
Jesse Gross committed
830
831
832
833
834
835
836
837
						}

						resp.Memory.Log(slog.LevelDebug)
						slog.Debug("memory", "success", resp.Success, "required", resp.Memory)

						if resp.Success {
							verifyGPULayers, err := s.createLayout(systemInfo, gpus, &resp.Memory, requireFull, backoff)
							if err != nil {
838
								return nil, err
Jesse Gross's avatar
Jesse Gross committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
							}

							slog.Debug("verifying layout", "layers", verifyGPULayers)

							if newGPULayers.Sum() <= verifyGPULayers.Sum() {
								gpuLayers = newGPULayers

								// Since we are going backwards (increasing the number of layers), ensure that
								// we can come back down if needed
								clear(pastAllocations)

								continue nextOperation
							}
						}
					}
				}

				// If we generated a layout a second time or go backwards, then we've converged. Use the last
				// layout before the repeat, which is already allocated.
				if resp.Success {
					continue nextOperation
				}

				if s.options.NumGPU >= 0 {
863
					return nil, fmt.Errorf("memory layout cannot be allocated with num_gpu = %v", s.options.NumGPU)
Jesse Gross's avatar
Jesse Gross committed
864
865
866
867
868
				}

				// Memory allocation failed even though we created a layout that we thought should
				// fit in available memory. This could happen if either our free memory reports
				// are incorrect or if available memory is changing between layout and allocation
869
				// time. Apply a backoff to try to find the real amount of available space.
Jesse Gross's avatar
Jesse Gross committed
870
871
				if backoff > 1 {
					slog.Warn("memory layout cannot be allocated", "memory", resp.Memory)
872
					return nil, errors.New("memory layout cannot be allocated")
Jesse Gross's avatar
Jesse Gross committed
873
				} else {
874
					backoff += 0.1
Jesse Gross's avatar
Jesse Gross committed
875
876
877
878
879
880
881
882
883
884
				}

				slog.Info("model layout did not fit, applying backoff", "backoff", fmt.Sprintf("%.2f", backoff))
			}
		}
	}

	s.loadRequest.GPULayers = gpuLayers
	resp, err := s.initModel(ctx, s.loadRequest, LoadOperationCommit)
	if err != nil {
885
		return nil, err
Jesse Gross's avatar
Jesse Gross committed
886
887
888
889
890
891
892
	}

	success = resp.Success
	s.mem = &resp.Memory

	if !success {
		slog.Warn("failed to commit memory for model", "memory", resp.Memory)
893
		return nil, errors.New("failed to commit memory for model")
Jesse Gross's avatar
Jesse Gross committed
894
895
	}

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
	return uniqueDeviceIDs(gpuLayers), nil
}

func uniqueDeviceIDs(gpuLayers ml.GPULayersList) []ml.DeviceID {
	devices := []ml.DeviceID{}
	for _, layer := range gpuLayers {
		new := true
		for _, ID := range devices {
			if layer.DeviceID == ID {
				new = false
				break
			}
		}
		if new {
			devices = append(devices, layer.DeviceID)
		}
	}
	return devices
Jesse Gross's avatar
Jesse Gross committed
914
915
916
917
918
919
920
921
}

// createLayout uses the current best view of memory requirements and creates a layout of model layers on GPUs.
// It does this by:
// - Calculating how much space each layer requires
// - Calculating how much space each GPU has available for layers, based on free memory and space occupied by the graph
// - Assigning layers
// - Ensuring that we don't exceed limits, such as requirements about partial offloading or system memory
922
func (s *llmServer) createLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, error) {
Jesse Gross's avatar
Jesse Gross committed
923
924
	if memory == nil {
		memory = &ml.BackendMemory{CPU: ml.DeviceMemory{
925
926
			Weights: make([]uint64, s.totalLayers),
			Cache:   make([]uint64, s.totalLayers),
Jesse Gross's avatar
Jesse Gross committed
927
928
		}}
	}
929
	gpuLayers, layers := s.buildLayout(systemGPUs, memory, requireFull, backoff)
930
	err := s.verifyLayout(systemInfo, systemGPUs, memory, requireFull, gpuLayers, layers)
931
932
933
934
935
936
	if err != nil {
		return nil, err
	}
	return gpuLayers, nil
}

937
func (s *llmServer) buildLayout(systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, backoff float32) (ml.GPULayersList, []uint64) {
938
939
	gpus := append(make([]ml.DeviceInfo, 0, len(systemGPUs)), systemGPUs...)
	sort.Sort(sort.Reverse(ml.ByFreeMemory(gpus)))
Jesse Gross's avatar
Jesse Gross committed
940
941
942
943

	layers := make([]uint64, len(memory.CPU.Weights))
	for i := range layers {
		for j := range memory.GPUs {
944
945
			layers[i] += memory.GPUs[j].Weights[i]
			layers[i] += memory.GPUs[j].Cache[i]
Jesse Gross's avatar
Jesse Gross committed
946
		}
947
948
		layers[i] += memory.CPU.Weights[i]
		layers[i] += memory.CPU.Cache[i]
949
		logutil.Trace("layer to assign", "layer", i, "size", format.HumanBytes2(layers[i]))
Jesse Gross's avatar
Jesse Gross committed
950
951
952
	}

	gpuLayers := ml.GPULayersList{}
953
	for _, gl := range ml.ByLibrary(gpus) {
Jesse Gross's avatar
Jesse Gross committed
954
955
956
957
958
959
960
961
		// If a GPU already has a graph allocated on it, then we should continue to use it.
		// Otherwise, we lose information that we got from previous allocations, which can
		// cause cycling. Plus, we get more information about required allocation from each
		// iteration, so it doesn't make sense that a later iteration would use fewer GPUs.
		lastUsedGPU := 0
		for i := range gl {
			found := false
			for j := range memory.GPUs {
962
				if gl[i].DeviceID == memory.GPUs[j].DeviceID {
963
					if memory.GPUs[j].Graph != 0 {
Jesse Gross's avatar
Jesse Gross committed
964
965
966
						lastUsedGPU = i
					}

967
					reserved := uint64(float32(gl[i].FreeMemory)*backoff) + gl[i].MinimumMemory() + envconfig.GpuOverhead() + memory.GPUs[j].Graph
Jesse Gross's avatar
Jesse Gross committed
968
969
970
971
972
973
					if gl[i].FreeMemory > reserved {
						gl[i].FreeMemory -= reserved
					} else {
						gl[i].FreeMemory = 0
					}

974
					slog.Debug("available gpu", "id", gl[i].ID, "library", gl[i].Library,
Jesse Gross's avatar
Jesse Gross committed
975
						"available layer vram", format.HumanBytes2(gl[i].FreeMemory),
976
						"backoff", fmt.Sprintf("%.2f", backoff), "minimum", format.HumanBytes2(gl[i].MinimumMemory()),
Jesse Gross's avatar
Jesse Gross committed
977
						"overhead", format.HumanBytes2(envconfig.GpuOverhead()),
978
						"graph", format.HumanBytes2(memory.GPUs[j].Graph))
Jesse Gross's avatar
Jesse Gross committed
979
980
981
982
983
984
985
986
987
988
989

					found = true
					break
				}
			}
			if !found {
				// The runner doesn't report seeing this GPU
				gl[i].FreeMemory = 0
			}
		}

990
		libraryGpuLayers := assignLayers(layers, gl, requireFull, s.options.NumGPU, lastUsedGPU)
Jesse Gross's avatar
Jesse Gross committed
991
992
993
994
		if libraryGpuLayers.Sum() > gpuLayers.Sum() {
			gpuLayers = libraryGpuLayers
		}
	}
995
	return gpuLayers, layers
996
}
Jesse Gross's avatar
Jesse Gross committed
997

998
// verifyLayout ensures that we don't exceed limits, such as requirements about partial offloading or system memory
999
func (s *llmServer) verifyLayout(systemInfo ml.SystemInfo, systemGPUs []ml.DeviceInfo, memory *ml.BackendMemory, requireFull bool, gpuLayers ml.GPULayersList, layers []uint64) error {
Jesse Gross's avatar
Jesse Gross committed
1000
	// These sizes will only increase as we go through additional iterations and get additional information.
1001
	cpuSize := memory.InputWeights + memory.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
1002
1003
1004
	var vramSize uint64
	for _, gl := range gpuLayers {
		for _, gpu := range memory.GPUs {
1005
			if gl.DeviceID == gpu.DeviceID {
1006
				vramSize += gpu.Graph
Jesse Gross's avatar
Jesse Gross committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
				break
			}
		}
	}

nextLayer:
	for i := range layers {
		for _, g := range gpuLayers {
			for _, gl := range g.Layers {
				if i == gl {
					vramSize += layers[i]
					continue nextLayer
				}
			}
		}
		cpuSize += layers[i]
	}

	if requireFull {
1026
1027
		if len(systemGPUs) > 0 && gpuLayers.Sum() < len(layers) && (s.options.NumGPU < 0 || gpuLayers.Sum() < s.options.NumGPU) {
			slog.Info("model requires more gpu memory than is currently available, evicting a model to make space", "loaded layers", gpuLayers.Sum())
1028
			return ErrLoadRequiredFull
Jesse Gross's avatar
Jesse Gross committed
1029
1030
		}

1031
		if cpuSize > systemInfo.FreeMemory {
1032
1033
			slog.Info("model requires more system memory than is currently available, evicting a model to make space", "required", cpuSize, "free", systemInfo.FreeMemory)
			return fmt.Errorf("model requires more system memory than is currently available %w", ErrLoadRequiredFull)
Jesse Gross's avatar
Jesse Gross committed
1034
1035
1036
1037
1038
1039
		}
	}

	// On linux and windows, over-allocating CPU memory will almost always result in an error
	// Darwin has fully dynamic swap so has no direct concept of free swap space
	if runtime.GOOS != "darwin" {
1040
		available := systemInfo.FreeMemory + systemInfo.FreeSwap
Jesse Gross's avatar
Jesse Gross committed
1041
		if cpuSize > available {
1042
1043
			slog.Warn("model request too large for system", "requested", format.HumanBytes2(cpuSize), "available", format.HumanBytes2(available), "total", format.HumanBytes2(systemInfo.TotalMemory), "free", format.HumanBytes2(systemInfo.FreeMemory), "swap", format.HumanBytes2(systemInfo.FreeSwap))
			return fmt.Errorf("model requires more system memory (%s) than is available (%s)", format.HumanBytes2(cpuSize), format.HumanBytes2(available))
Jesse Gross's avatar
Jesse Gross committed
1044
1045
		}
	} else {
1046
		if vramSize > systemInfo.TotalMemory {
Jesse Gross's avatar
Jesse Gross committed
1047
1048
1049
1050
1051
1052
1053
			// disable partial offloading when model is greater than total system memory as this
			// can lead to locking up the system
			s.options.NumGPU = 0
			gpuLayers = ml.GPULayersList{}
		}
	}

1054
	if len(systemGPUs) > 0 && gpuLayers.Sum() == 0 {
Jesse Gross's avatar
Jesse Gross committed
1055
1056
1057
		slog.Debug("insufficient VRAM to load any model layers")
	}

1058
	return nil
Jesse Gross's avatar
Jesse Gross committed
1059
1060
1061
}

// assignLayers packs the maximum number of layers onto the smallest set of GPUs and comes up with a layer assignment
1062
func assignLayers(layers []uint64, gpus []ml.DeviceInfo, requireFull bool, requestedLayers int, lastUsedGPU int) (gpuLayers ml.GPULayersList) {
1063
1064
1065
1066
1067
1068
1069
	// If the user is manually overriding parameters, treat all GPUs equally so they split according to VRAM
	if requestedLayers >= 0 || envconfig.SchedSpread() {
		for i := range gpus {
			gpus[i].Integrated = false
		}
	}

Jesse Gross's avatar
Jesse Gross committed
1070
1071
1072
1073
1074
1075
1076
1077
	// If we can't fit everything then prefer offloading layers other than the output layer
	for range 2 {
		// requestedLayers may be -1 if nothing was requested
		requestedLayers = min(len(layers), requestedLayers)

		if !envconfig.SchedSpread() {
			for i := lastUsedGPU; i < len(gpus); i++ {
				// Try to pack things into as few GPUs as possible
1078
				forceRequest := i == len(gpus)-1 && !requireFull
Jesse Gross's avatar
Jesse Gross committed
1079
1080
1081
1082
1083
1084
				gpuLayers = findBestFit(layers, gpus[:i+1], requestedLayers, forceRequest)
				if gpuLayers.Sum() == len(layers) || gpuLayers.Sum() == requestedLayers {
					break
				}
			}
		} else {
1085
			gpuLayers = findBestFit(layers, gpus, requestedLayers, !requireFull)
Jesse Gross's avatar
Jesse Gross committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
		}

		// We only stop if we've gotten all of the layers - even if we got requestedLayers, we still
		// might want to try dropping the output layer.
		if gpuLayers.Sum() == len(layers) {
			return gpuLayers
		}

		layers = layers[:len(layers)-1]
	}

	return gpuLayers
}

// findBestFit binary searches to find the smallest capacity factor that can fit
// the max number of layers. The capacity factor is multiplied by the free space on
1102
1103
// each GPU and a small one will force even balancing. Higher performance GPUs are
// used first.
1104
func findBestFit(layers []uint64, gpus []ml.DeviceInfo, requestedLayers int, forceRequest bool) (gpuLayers ml.GPULayersList) {
1105
1106
1107
	for _, gl := range ml.ByPerformance(gpus) {
		var high float32 = 1
		var low float32 = 0
Jesse Gross's avatar
Jesse Gross committed
1108

1109
1110
1111
1112
		// If we need to fulfill the requested number of layers, pretend we have almost infinite VRAM
		if requestedLayers >= 0 && forceRequest {
			high = 1000
		}
Jesse Gross's avatar
Jesse Gross committed
1113

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
		bestAssignments := greedyFit(layers, gl, high, requestedLayers)
		maxNumGPU := bestAssignments.Sum()

		for high-low > 1e-6 {
			mid := (low + high) / 2
			assignments := greedyFit(layers, gl, mid, requestedLayers)
			if assignments.Sum() == maxNumGPU {
				high = mid
				bestAssignments = assignments
			} else {
				low = mid
			}
Jesse Gross's avatar
Jesse Gross committed
1126
		}
1127
1128
1129
1130

		layers = layers[:len(layers)-bestAssignments.Sum()]
		requestedLayers -= bestAssignments.Sum()
		gpuLayers = append(bestAssignments, gpuLayers...)
Jesse Gross's avatar
Jesse Gross committed
1131
	}
1132
1133

	return gpuLayers
Jesse Gross's avatar
Jesse Gross committed
1134
1135
1136
}

// greedyFit assigns layers incrementally to GPUs, spilling over as each runs out of free space
1137
func greedyFit(layers []uint64, gpus []ml.DeviceInfo, capacity float32, requestedLayers int) (gpuLayers ml.GPULayersList) {
Jesse Gross's avatar
Jesse Gross committed
1138
	device := len(gpus) - 1
1139
	gpuLayers = ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}
Jesse Gross's avatar
Jesse Gross committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
	freeSpace := uint64(float32(gpus[device].FreeMemory) * capacity)
	for i := len(layers) - 1; i >= 0; i-- {
		if requestedLayers >= 0 && len(layers)-1-i >= requestedLayers {
			break
		}

		for {
			if layers[i] <= freeSpace {
				gpuLayers[0].Layers = append([]int{i}, gpuLayers[0].Layers...)
				freeSpace -= layers[i]
				break
			}

			device--
			if device < 0 {
				return gpuLayers
			}
1157
			gpuLayers = append(ml.GPULayersList{{DeviceID: gpus[device].DeviceID}}, gpuLayers...)
Jesse Gross's avatar
Jesse Gross committed
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
			freeSpace = uint64(float32(gpus[device].FreeMemory) * capacity)
		}
	}
	return gpuLayers
}

// waitUntilRunnerLaunched sleeps until the runner subprocess is alive enough
// to respond to status requests
func (s *llmServer) waitUntilRunnerLaunched(ctx context.Context) error {
	for {
		_, err := s.getServerStatus(ctx)
		if err == nil {
			break
		}

		t := time.NewTimer(10 * time.Millisecond)
		select {
		case <-t.C:
			continue
		case <-ctx.Done():
			return ctx.Err()
		}
	}

	return nil
}

// initModel sends a load request to the runner based on the request operation (fit, alloc, commit)
// and parameters
func (s *llmServer) initModel(ctx context.Context, req LoadRequest, operation LoadOperation) (*LoadResponse, error) {
	req.Operation = operation

	data, err := json.Marshal(req)
	if err != nil {
		return nil, fmt.Errorf("error marshaling load data: %w", err)
	}

	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/load", s.port), bytes.NewBuffer(data))
	if err != nil {
		return nil, fmt.Errorf("error creating load request: %w", err)
	}
	r.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(r)
	if err != nil {
		return nil, fmt.Errorf("do load request: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return nil, fmt.Errorf("read load request: %w", err)
	}

	if resp.StatusCode >= 400 {
		log.Printf("llm load error: %s", body)
		return nil, fmt.Errorf("%s", body)
	}

	var llmResp LoadResponse
	if err := json.Unmarshal(body, &llmResp); err != nil {
		return nil, fmt.Errorf("load unmarshal encode response: %w", err)
	}

	return &llmResp, nil
1223
1224
1225
1226
1227
1228
}

type ServerStatus int

const ( // iota is reset to 0
	ServerStatusReady ServerStatus = iota
1229
	ServerStatusNoSlotsAvailable
Jesse Gross's avatar
Jesse Gross committed
1230
	ServerStatusLaunched
1231
1232
1233
1234
1235
	ServerStatusLoadingModel
	ServerStatusNotResponding
	ServerStatusError
)

1236
func (s ServerStatus) String() string {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1237
1238
1239
	switch s {
	case ServerStatusReady:
		return "llm server ready"
1240
	case ServerStatusNoSlotsAvailable:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1241
		return "llm busy - no slots available"
Jesse Gross's avatar
Jesse Gross committed
1242
1243
	case ServerStatusLaunched:
		return "llm server launched"
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
	case ServerStatusLoadingModel:
		return "llm server loading model"
	case ServerStatusNotResponding:
		return "llm server not responding"
	default:
		return "llm server error"
	}
}

1253
1254
1255
type ServerStatusResponse struct {
	Status   ServerStatus `json:"status"`
	Progress float32      `json:"progress"`
1256
1257
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1258
func (s *llmServer) getServerStatus(ctx context.Context) (ServerStatus, error) {
1259
1260
1261
1262
1263
1264
	// Fail fast if its exited
	if s.cmd.ProcessState != nil {
		msg := ""
		if s.status != nil && s.status.LastErrMsg != "" {
			msg = s.status.LastErrMsg
		}
1265
1266
		if s.cmd.ProcessState.ExitCode() == -1 {
			// Most likely a signal killed it, log some more details to try to help troubleshoot
1267
			slog.Warn("llama runner process no longer running", "sys", s.cmd.ProcessState.Sys(), "string", s.cmd.ProcessState)
1268
		}
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
		return ServerStatusError, fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
	}

	req, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/health", s.port), nil)
	if err != nil {
		return ServerStatusError, fmt.Errorf("error creating GET request: %v", err)
	}
	req.Header.Set("Content-Type", "application/json")

	resp, err := http.DefaultClient.Do(req)
	if err != nil {
		if errors.Is(err, context.DeadlineExceeded) {
Michael Yang's avatar
Michael Yang committed
1281
			return ServerStatusNotResponding, errors.New("server not responding")
1282
		}
1283
1284
1285
		if strings.Contains(err.Error(), "connection refused") {
			return ServerStatusNotResponding, errors.New("connection refused")
		}
1286
1287
1288
1289
1290
1291
1292
1293
1294
		return ServerStatusError, fmt.Errorf("health resp: %w", err)
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
		return ServerStatusError, fmt.Errorf("read health request: %w", err)
	}

1295
1296
	var ssr ServerStatusResponse
	if err := json.Unmarshal(body, &ssr); err != nil {
1297
1298
1299
		return ServerStatusError, fmt.Errorf("health unmarshal encode response: %w", err)
	}

1300
1301
1302
1303
	switch ssr.Status {
	case ServerStatusLoadingModel:
		s.loadProgress = ssr.Progress
		return ssr.Status, nil
Jesse Gross's avatar
Jesse Gross committed
1304
	case ServerStatusLaunched, ServerStatusReady, ServerStatusNoSlotsAvailable:
1305
		return ssr.Status, nil
1306
	default:
1307
		return ssr.Status, fmt.Errorf("server error: %+v", ssr)
1308
1309
1310
	}
}

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
// getServerStatusRetry will retry if ServerStatusNoSlotsAvailable is received
func (s *llmServer) getServerStatusRetry(ctx context.Context) (ServerStatus, error) {
	var retries int
	for {
		status, err := s.getServerStatus(ctx)
		if err != nil {
			return status, err
		}

		if status == ServerStatusNoSlotsAvailable {
			if retries >= 10 {
				return status, fmt.Errorf("no slots available after %d retries", retries)
			}

			time.Sleep(5 * time.Millisecond)
			retries++
			continue
		}

		return status, nil
	}
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1334
func (s *llmServer) Ping(ctx context.Context) error {
1335
1336
1337
1338
1339
1340
1341
1342
	_, err := s.getServerStatus(ctx)
	if err != nil {
		slog.Debug("server unhealthy", "error", err)
		return err
	}
	return nil
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1343
func (s *llmServer) WaitUntilRunning(ctx context.Context) error {
1344
	stallDuration := envconfig.LoadTimeout()    // If no progress happens
1345
	stallTimer := time.Now().Add(stallDuration) // give up if we stall
1346
1347
1348

	slog.Info("waiting for llama runner to start responding")
	var lastStatus ServerStatus = -1
1349
	fullyLoaded := false
ManniX-ITA's avatar
ManniX-ITA committed
1350

1351
1352
	for {
		select {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1353
		case <-ctx.Done():
1354
			slog.Warn("client connection closed before server finished loading, aborting load")
1355
			return fmt.Errorf("timed out waiting for llama runner to start: %w", ctx.Err())
1356
		case err := <-s.done:
1357
			return fmt.Errorf("llama runner process has terminated: %w", err)
1358
1359
		default:
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1360
		if time.Now().After(stallTimer) {
ManniX-ITA's avatar
ManniX-ITA committed
1361
			// timeout
1362
1363
1364
1365
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
			}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1366
			return fmt.Errorf("timed out waiting for llama runner to start - progress %0.2f - %s", s.loadProgress, msg)
ManniX-ITA's avatar
ManniX-ITA committed
1367
1368
1369
1370
1371
		}
		if s.cmd.ProcessState != nil {
			msg := ""
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1372
			}
ManniX-ITA's avatar
ManniX-ITA committed
1373
1374
			return fmt.Errorf("llama runner process no longer running: %d %s", s.cmd.ProcessState.ExitCode(), msg)
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1375
1376
		ctx, cancel := context.WithTimeout(ctx, 200*time.Millisecond)
		defer cancel()
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1377
		priorProgress := s.loadProgress
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1378
1379
1380
		status, _ := s.getServerStatus(ctx)
		if lastStatus != status && status != ServerStatusReady {
			// Only log on status changes
1381
			slog.Info("waiting for server to become available", "status", status)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1382
		}
ManniX-ITA's avatar
ManniX-ITA committed
1383
1384
		switch status {
		case ServerStatusReady:
Jesse Gross's avatar
Jesse Gross committed
1385
			slog.Info(fmt.Sprintf("llama runner started in %0.2f seconds", time.Since(s.loadStart).Seconds()))
ManniX-ITA's avatar
ManniX-ITA committed
1386
1387
			return nil
		default:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1388
			lastStatus = status
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1389
1390
1391
1392
			// Reset the timer as long as we're making forward progress on the load
			if priorProgress != s.loadProgress {
				slog.Debug(fmt.Sprintf("model load progress %0.2f", s.loadProgress))
				stallTimer = time.Now().Add(stallDuration)
1393
			} else if !fullyLoaded && int(s.loadProgress*100.0) >= 100 {
1394
				slog.Debug("model load completed, waiting for server to become available", "status", status)
1395
				stallTimer = time.Now().Add(stallDuration)
1396
				fullyLoaded = true
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1397
			}
ManniX-ITA's avatar
ManniX-ITA committed
1398
1399
			time.Sleep(time.Millisecond * 250)
			continue
1400
1401
1402
1403
		}
	}
}

1404
1405
1406
1407
1408
1409
1410
func (s *llmServer) Pid() int {
	if s.cmd != nil && s.cmd.Process != nil {
		return s.cmd.Process.Pid
	}
	return -1
}

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
func (s *llmServer) GetPort() int {
	return s.port
}

func (s *llmServer) HasExited() bool {
	if s.cmd != nil && s.cmd.ProcessState != nil && s.cmd.ProcessState.ExitCode() >= 0 {
		return true
	}
	return false
}

1422
var grammarJSON = `
1423
1424
1425
1426
root   ::= object
value  ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
  "{" ws (
1427
         string ":" ws value
1428
    ("," ws string ":" ws value)*
1429
  )? ws "}" 
1430
1431
1432
1433
array  ::=
  "[" ws (
            value
    ("," ws value)*
1434
  )? ws "]" 
1435
1436
string ::=
  "\"" (
1437
    [^"\\\x7F\x00-\x1F] |
1438
    "\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
1439
1440
  )* "\"" 
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? 
1441
1442
1443
1444
1445
1446
1447
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`

const maxBufferSize = 512 * format.KiloByte

type ImageData struct {
1448
1449
	Data []byte `json:"data"`
	ID   int    `json:"id"`
1450
1451
1452
1453
}

type CompletionRequest struct {
	Prompt  string
1454
	Format  json.RawMessage
1455
	Images  []ImageData
Michael Yang's avatar
Michael Yang committed
1456
	Options *api.Options
1457

1458
1459
1460
	Grammar  string // set before sending the request to the subprocess
	Shift    bool
	Truncate bool
1461
1462
1463
1464
1465
1466

	// Logprobs specifies whether to include log probabilities in the response
	Logprobs bool

	// TopLogprobs specifies the number of most likely alternative tokens to return (0-20)
	TopLogprobs int
1467
1468
}

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
// DoneReason represents the reason why a completion response is done
type DoneReason int

const (
	// DoneReasonStop indicates the completion stopped naturally
	DoneReasonStop DoneReason = iota
	// DoneReasonLength indicates the completion stopped due to length limits
	DoneReasonLength
	// DoneReasonConnectionClosed indicates the completion stopped due to the connection being closed
	DoneReasonConnectionClosed
)

func (d DoneReason) String() string {
	switch d {
	case DoneReasonLength:
		return "length"
	case DoneReasonStop:
		return "stop"
	default:
		return "" // closed
	}
}

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
// TokenLogprob represents log probability information for a single token alternative.
type TokenLogprob struct {
	Token   string  `json:"token"`
	Logprob float64 `json:"logprob"`
}

// Logprob contains log probability information for a generated token.
type Logprob struct {
	TokenLogprob
	TopLogprobs []TokenLogprob `json:"top_logprobs,omitempty"`
}

1504
type CompletionResponse struct {
1505
1506
1507
1508
1509
1510
1511
	Content            string        `json:"content"`
	DoneReason         DoneReason    `json:"done_reason"`
	Done               bool          `json:"done"`
	PromptEvalCount    int           `json:"prompt_eval_count"`
	PromptEvalDuration time.Duration `json:"prompt_eval_duration"`
	EvalCount          int           `json:"eval_count"`
	EvalDuration       time.Duration `json:"eval_duration"`
1512
1513
1514

	// Logprobs contains log probability information if requested
	Logprobs []Logprob `json:"logprobs,omitempty"`
1515
1516
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1517
func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error {
1518
	slog.Debug("completion request", "images", len(req.Images), "prompt", len(req.Prompt), "format", string(req.Format))
1519
	logutil.Trace("completion request", "prompt", req.Prompt)
1520

1521
	if len(req.Format) > 0 {
1522
1523
1524
1525
1526
1527
		switch string(req.Format) {
		case `null`, `""`:
			// Field was set, but "missing" a value. We accept
			// these as "not set".
			break
		case `"json"`:
1528
			req.Grammar = grammarJSON
1529
1530
1531
1532
		default:
			if req.Format[0] != '{' {
				return fmt.Errorf("invalid format: %q; expected \"json\" or a valid JSON Schema object", req.Format)
			}
1533

1534
1535
1536
1537
			// User provided a JSON schema
			g := llama.SchemaToGrammar(req.Format)
			if g == nil {
				return fmt.Errorf("invalid JSON schema in format")
1538
			}
1539
			req.Grammar = string(g)
1540
1541
1542
		}
	}

1543
1544
1545
1546
1547
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
	if err := s.sem.Acquire(ctx, 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
		return err
	}
	defer s.sem.Release(1)

	// put an upper limit on num_predict to avoid the model running on forever
	if req.Options.NumPredict < 0 || req.Options.NumPredict > 10*s.options.NumCtx {
		req.Options.NumPredict = 10 * s.options.NumCtx
	}

1563
	// Make sure the server is ready
1564
	status, err := s.getServerStatusRetry(ctx)
1565
1566
1567
	if err != nil {
		return err
	} else if status != ServerStatusReady {
1568
		return fmt.Errorf("unexpected server status: %s", status)
1569
1570
	}

1571
1572
1573
1574
	// Handling JSON marshaling with special characters unescaped.
	buffer := &bytes.Buffer{}
	enc := json.NewEncoder(buffer)
	enc.SetEscapeHTML(false)
1575

1576
	if err := enc.Encode(req); err != nil {
1577
1578
		return fmt.Errorf("failed to marshal data: %v", err)
	}
1579

1580
1581
1582
1583
1584
1585
	endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", s.port)
	serverReq, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, buffer)
	if err != nil {
		return fmt.Errorf("error creating POST request: %v", err)
	}
	serverReq.Header.Set("Content-Type", "application/json")
1586

1587
	res, err := http.DefaultClient.Do(serverReq)
1588
1589
1590
1591
	if err != nil && errors.Is(err, context.Canceled) {
		// client closed connection
		return err
	} else if err != nil {
1592
1593
		slog.Error("post predict", "error", err)
		return errors.New("model runner has unexpectedly stopped, this may be due to resource limitations or an internal error, check ollama server logs for details")
1594
1595
	}
	defer res.Body.Close()
1596

1597
1598
	if res.StatusCode >= 400 {
		bodyBytes, err := io.ReadAll(res.Body)
1599
		if err != nil {
1600
			return fmt.Errorf("failed reading llm error response: %w", err)
1601
		}
1602
		log.Printf("llm predict error: %s", bodyBytes)
1603
		return api.StatusError{StatusCode: res.StatusCode, ErrorMessage: strings.TrimSpace(string(bodyBytes))}
1604
	}
1605

1606
1607
1608
	scanner := bufio.NewScanner(res.Body)
	buf := make([]byte, 0, maxBufferSize)
	scanner.Buffer(buf, maxBufferSize)
1609

1610
1611
1612
	// keep track of the last token generated, this is used to abort if the model starts looping
	var lastToken string
	var tokenRepeat int
1613

1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
	for scanner.Scan() {
		select {
		case <-ctx.Done():
			// This handles the request cancellation
			return ctx.Err()
		default:
			line := scanner.Bytes()
			if len(line) == 0 {
				continue
			}
1624

1625
1626
			evt, ok := bytes.CutPrefix(line, []byte("data: "))
			if !ok {
1627
				evt = line
1628
			}
1629

1630
			var c CompletionResponse
1631
			if err := json.Unmarshal(evt, &c); err != nil {
1632
				return fmt.Errorf("error unmarshalling llm prediction response: %v", err)
1633
1634
			}
			switch {
1635
			case strings.TrimSpace(c.Content) == lastToken:
1636
1637
1638
1639
1640
				tokenRepeat++
			default:
				lastToken = strings.TrimSpace(c.Content)
				tokenRepeat = 0
			}
1641

1642
1643
1644
1645
1646
			// 30 picked as an arbitrary max token repeat limit, modify as needed
			if tokenRepeat > 30 {
				slog.Debug("prediction aborted, token repeat limit reached")
				return ctx.Err()
			}
1647

1648
1649
			if c.Content != "" {
				fn(CompletionResponse{
1650
1651
					Content:  c.Content,
					Logprobs: c.Logprobs,
1652
				})
1653
			}
1654

1655
			if c.Done {
1656
				fn(c)
1657
				return nil
1658
			}
1659
		}
1660
	}
1661

1662
	if err := scanner.Err(); err != nil {
1663
		if strings.Contains(err.Error(), "unexpected EOF") || strings.Contains(err.Error(), "forcibly closed") {
1664
			s.Close()
1665
			var msg string
1666
1667
			if s.status != nil && s.status.LastErrMsg != "" {
				msg = s.status.LastErrMsg
1668
1669
			} else {
				msg = err.Error()
1670
			}
1671
			return fmt.Errorf("an error was encountered while running the model: %s", msg)
1672
1673
		}

1674
		return fmt.Errorf("error reading llm response: %v", err)
1675
1676
	}

1677
	return nil
1678
1679
}

1680
type EmbeddingRequest struct {
1681
	Content string `json:"content"`
1682
1683
}

1684
type EmbeddingResponse struct {
1685
1686
	Embedding       []float32 `json:"embedding"`
	PromptEvalCount int       `json:"prompt_eval_count"`
1687
1688
}

1689
func (s *llmServer) Embedding(ctx context.Context, input string) ([]float32, int, error) {
1690
	logutil.Trace("embedding request", "input", input)
1691

1692
	if err := s.sem.Acquire(ctx, 1); err != nil {
1693
1694
1695
1696
1697
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
1698
		return nil, 0, err
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1699
	}
1700
	defer s.sem.Release(1)
1701

1702
	// Make sure the server is ready
1703
	status, err := s.getServerStatusRetry(ctx)
1704
	if err != nil {
1705
		return nil, 0, err
1706
	} else if status != ServerStatusReady {
1707
		return nil, 0, fmt.Errorf("unexpected server status: %s", status)
1708
1709
	}

1710
	data, err := json.Marshal(EmbeddingRequest{Content: input})
Michael Yang's avatar
Michael Yang committed
1711
	if err != nil {
1712
		return nil, 0, fmt.Errorf("error marshaling embed data: %w", err)
1713
1714
	}

1715
	r, err := http.NewRequestWithContext(ctx, http.MethodPost, fmt.Sprintf("http://127.0.0.1:%d/embedding", s.port), bytes.NewBuffer(data))
1716
	if err != nil {
1717
		return nil, 0, fmt.Errorf("error creating embed request: %w", err)
1718
	}
1719
	r.Header.Set("Content-Type", "application/json")
1720

1721
	resp, err := http.DefaultClient.Do(r)
1722
	if err != nil {
1723
		return nil, 0, fmt.Errorf("do embedding request: %w", err)
1724
1725
1726
1727
1728
	}
	defer resp.Body.Close()

	body, err := io.ReadAll(resp.Body)
	if err != nil {
1729
		return nil, 0, fmt.Errorf("error reading embed response: %w", err)
1730
1731
1732
	}

	if resp.StatusCode >= 400 {
1733
		log.Printf("llm embedding error: %s", body)
1734
1735
1736
1737
		return nil, 0, api.StatusError{
			StatusCode:   resp.StatusCode,
			ErrorMessage: string(body),
		}
1738
1739
	}

1740
	var e EmbeddingResponse
1741
	if err := json.Unmarshal(body, &e); err != nil {
1742
		return nil, 0, fmt.Errorf("unmarshal tokenize response: %w", err)
1743
1744
	}

1745
	return e.Embedding, e.PromptEvalCount, nil
1746
1747
}

1748
func (s *llamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
1749
1750
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()
1751

1752
1753
	if s.llamaModel == nil {
		return nil, fmt.Errorf("no tokenizer configured")
Michael Yang's avatar
Michael Yang committed
1754
1755
	}

1756
	return s.llamaModel.Tokenize(content, false, true)
Michael Yang's avatar
Michael Yang committed
1757
1758
}

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
func (s *ollamaServer) Tokenize(ctx context.Context, content string) ([]int, error) {
	tokens, err := s.textProcessor.Encode(content, false)
	if err != nil {
		return nil, err
	}

	toks := make([]int, len(tokens))
	for i, t := range tokens {
		toks[i] = int(t)
	}

	return toks, nil
1771
1772
}

1773
func (s *llamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
1774
1775
1776
	s.llamaModelLock.Lock()
	defer s.llamaModelLock.Unlock()

1777
1778
	if s.llamaModel == nil {
		return "", fmt.Errorf("no tokenizer configured")
1779
	}
1780
1781
1782
1783

	var resp string
	for _, token := range tokens {
		resp += s.llamaModel.TokenToPiece(token)
Michael Yang's avatar
Michael Yang committed
1784
	}
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

	return resp, nil
}

func (s *ollamaServer) Detokenize(ctx context.Context, tokens []int) (string, error) {
	toks := make([]int32, len(tokens))
	for i, t := range tokens {
		toks[i] = int32(t)
	}

	content, err := s.textProcessor.Decode(toks)
	if err != nil {
		return "", err
	}

	return content, nil
1801
1802
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1803
func (s *llmServer) Close() error {
1804
1805
1806
1807
	s.llamaModelLock.Lock()
	if s.llamaModel != nil {
		llama.FreeModel(s.llamaModel)
		s.llamaModel = nil
1808
	}
1809
	s.llamaModelLock.Unlock()
1810

1811
	if s.cmd != nil {
1812
		slog.Debug("stopping llama server", "pid", s.Pid())
1813
1814
1815
		if err := s.cmd.Process.Kill(); err != nil {
			return err
		}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1816
1817
		// if ProcessState is already populated, Wait already completed, no need to wait again
		if s.cmd.ProcessState == nil {
1818
			slog.Debug("waiting for llama server to exit", "pid", s.Pid())
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1819
1820
			<-s.done
		}
1821

1822
		slog.Debug("llama server stopped", "pid", s.Pid())
1823
1824
1825
1826
1827
	}

	return nil
}

1828
1829
1830
1831
1832
func (s *llamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
	slog.Debug("llamarunner free vram reporting not supported")
	return nil
}

1833
func (s *llmServer) VRAMSize() uint64 {
Jesse Gross's avatar
Jesse Gross committed
1834
1835
1836
1837
1838
1839
1840
	if s.mem == nil {
		return 0
	}

	var mem uint64

	for _, g := range s.mem.GPUs {
1841
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1842
1843
1844
1845
1846
1847
	}

	// Some elements are always on CPU. However, if we have allocated all layers
	// on the GPU then include the CPU components as well, to represent complete offloading.
	noCPULayers := true
	for i := range s.mem.CPU.Weights {
1848
		if s.mem.CPU.Weights[i] != 0 || s.mem.CPU.Cache[i] != 0 {
Jesse Gross's avatar
Jesse Gross committed
1849
1850
1851
1852
1853
			noCPULayers = false
			break
		}
	}
	if noCPULayers {
1854
1855
		mem += s.mem.InputWeights
		mem += s.mem.CPU.Graph
Jesse Gross's avatar
Jesse Gross committed
1856
1857
1858
1859
1860
	}

	return mem
}

1861
func (s *llmServer) TotalSize() uint64 {
Jesse Gross's avatar
Jesse Gross committed
1862
1863
1864
1865
	if s.mem == nil {
		return 0
	}

1866
1867
	mem := s.mem.InputWeights
	mem += s.mem.CPU.Size()
Jesse Gross's avatar
Jesse Gross committed
1868
	for _, g := range s.mem.GPUs {
1869
		mem += g.Size()
Jesse Gross's avatar
Jesse Gross committed
1870
1871
1872
1873
1874
	}

	return mem
}

1875
func (s *llmServer) VRAMByGPU(id ml.DeviceID) uint64 {
Jesse Gross's avatar
Jesse Gross committed
1876
1877
1878
1879
1880
	if s.mem == nil {
		return 0
	}

	for _, g := range s.mem.GPUs {
1881
		if g.DeviceID == id {
1882
			return g.Size()
Jesse Gross's avatar
Jesse Gross committed
1883
1884
1885
1886
1887
		}
	}

	return 0
}
1888
1889

func (s *ollamaServer) GetDeviceInfos(ctx context.Context) []ml.DeviceInfo {
1890
	devices, err := ml.GetDevicesFromRunner(ctx, s)
1891
1892
1893
1894
1895
1896
1897
1898
1899
	if err != nil {
		if s.cmd != nil && s.cmd.ProcessState == nil {
			// Still running but hit an error, log
			slog.Debug("failure refreshing GPU information", "error", err)
		}
		// else no longer running so suppress logging as a failure is expected
	}
	return devices
}