model.go 5.56 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
package qwen2

import (
	"cmp"
5
	"fmt"
Michael Yang's avatar
Michael Yang committed
6
	"math"
7
	"strings"
Michael Yang's avatar
Michael Yang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	headDim, ropeDim                 int
	eps, ropeBase, ropeScale         float32
}

type Attention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)
	headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
	ropeDim := cmp.Or(opts.ropeDim, headDim)

	query := attn.Query.Forward(ctx, hiddenStates)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)

	key := attn.Key.Forward(ctx, hiddenStates)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	value := attn.Value.Forward(ctx, hiddenStates)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

46
47
	query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
	key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
Michael Yang's avatar
Michael Yang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
	attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)

	return attn.Output.Forward(ctx, attention)
}

type MLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
62
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
Michael Yang's avatar
Michael Yang committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
	return mlp.Down.Forward(ctx, hiddenStates)
}

type DecoderLayer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	Attention     *Attention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

func (d DecoderLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	residual := hiddenStates

	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)
	residual = hiddenStates

	hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.MLP.Forward(ctx, hiddenStates)
	return hiddenStates.Add(ctx, residual)
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding  `gguf:"token_embd"`
	Layers         []DecoderLayer `gguf:"blk"`
	OutputNorm     *nn.RMSNorm    `gguf:"output_norm"`
	Output         *nn.Linear     `gguf:"output,alt:token_embd"`

	Options
}

// Forward implements model.Model.
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
105
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
Michael Yang's avatar
Michael Yang committed
106
107
108
109
110
111
112
113

	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)

	for i, layer := range m.Layers {
		m.Cache.SetLayer(i)

		var outputs ml.Tensor
		if i == len(m.Layers)-1 {
114
			outputs = batch.Outputs
Michael Yang's avatar
Michael Yang committed
115
116
117
118
119
120
121
122
123
124
125
126
		}

		hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	hiddenStates = m.Output.Forward(ctx, hiddenStates)
	return hiddenStates, nil
}

func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
127
	return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
Michael Yang's avatar
Michael Yang committed
128
129
130
}

func New(c fs.Config) (model.Model, error) {
131
132
133
134
135
136
137
138
	// This model currently only supports the gpt2 tokenizer
	if c.String("tokenizer.ggml.model") == "llama" {
		return nil, fmt.Errorf("unsupported tokenizer: llama")
	}
	// detect library/qwen model(s) which are incompatible
	if strings.HasPrefix(c.String("general.name"), "Qwen2-beta") {
		return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
	}
Michael Yang's avatar
Michael Yang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
	m := Model{
		Layers: make([]DecoderLayer, c.Uint("block_count")),
		BytePairEncoding: model.NewBytePairEncoding(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
154
			`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
Michael Yang's avatar
Michael Yang committed
155
156
157
158
159
160
161
162
		),
		Options: Options{
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
			headDim:    int(c.Uint("attention.key_length")),
			ropeDim:    int(c.Uint("rope.dimension_count")),
			ropeBase:   c.Float("rope.freq_base"),
163
			ropeScale:  c.Float("rope.scaling.factor", 1),
Michael Yang's avatar
Michael Yang committed
164
165
166
167
168
169
170
171
172
173
174
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
		},
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)
	return &m, nil
}

func init() {
	model.Register("qwen2", New)
}