convert_bert.go 4.35 KB
Newer Older
Michael Yang's avatar
bert  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
package convert

import (
	"cmp"
	"encoding/json"
	"io/fs"
	"path/filepath"
	"slices"
	"strings"

	"github.com/ollama/ollama/llm"
)

type bert struct {
	Parameters
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	NLayer                uint32  `json:"n_layer"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	NCtx                  uint32  `json:"n_ctx"`
	HiddenSize            uint32  `json:"hidden_size"`
	NEmbd                 uint32  `json:"n_embd"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NInner                uint32  `json:"n_inner"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NHead                 uint32  `json:"n_head"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	LayerNormEPS          float32 `json:"layer_norm_eps"`
	LayerNormEpsilon      float32 `json:"layer_norm_epsilon"`
	NormEpsilon           float32 `json:"norm_epsilon"`

	PoolingType uint32
}

var (
	_ Converter  = (*bert)(nil)
	_ moreParser = (*bert)(nil)
)

func (p *bert) parseMore(fsys fs.FS) error {
	bts, err := fs.ReadFile(fsys, "modules.json")
	if err != nil {
		return err
	}

	var modules []struct {
		Type string `json:"type"`
		Path string `json:"path"`
	}

	if err := json.Unmarshal(bts, &modules); err != nil {
		return err
	}

	var pooling string
	for _, m := range modules {
		if m.Type == "sentence_transformers.models.Pooling" {
			pooling = m.Path
			break
		}
	}

	if pooling != "" {
		bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
		if err != nil {
			return err
		}

		var pc struct {
			PoolingModeCLSToken   bool `json:"pooling_mode_cls_token"`
			PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
		}

		if err := json.Unmarshal(bts, &pc); err != nil {
			return err
		}

		if pc.PoolingModeMeanTokens {
			p.PoolingType = 1
		} else if pc.PoolingModeCLSToken {
			p.PoolingType = 2
		}
	}

	return nil
}

func (p *bert) KV(t *Tokenizer) llm.KV {
	kv := p.Parameters.KV(t)
	kv["general.architecture"] = "bert"
	kv["general.name"] = "bert"
	kv["bert.attention.causal"] = false
	kv["bert.pooling_type"] = p.PoolingType

	kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
		kv["bert.context_length"] = contextLength
	}

	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
		kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
	}

	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
		kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
	}

	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
		kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
		kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	kv["tokenizer.ggml.model"] = "bert"
	kv["tokenizer.ggml.token_type_count"] = uint32(2)

	// convert to phantom space tokens
	for i, e := range t.Tokens {
		if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
			// noop
		} else if strings.HasPrefix(e, "##") {
			t.Tokens[i] = e[2:]
		} else {
			t.Tokens[i] = "\u2581" + e
		}
	}

	kv["tokenizer.ggml.tokens"] = t.Tokens

	return kv
}

func (p *bert) Tensors(ts []Tensor) []llm.Tensor {
	var out []llm.Tensor
	for _, t := range ts {
		if slices.Contains([]string{
			"embeddings.position_ids",
			"pooler.dense.weight",
			"pooler.dense.bias",
		}, t.Name()) {
			continue
		}

		name := p.tensorName(t.Name())
		out = append(out, llm.Tensor{
			Name:     name,
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

func (bert) tensorName(n string) string {
	return strings.NewReplacer(
		"encoder.layer", "blk",
		"encoder.layers", "blk",
		"embeddings.word_embeddings", "token_embd",
		"embeddings.token_type_embeddings", "token_types",
		"embeddings.LayerNorm", "token_embd_norm",
		"embeddings.position_embeddings", "position_embd",
		"attention.self.query", "attn_q",
		"attention.self.key", "attn_k",
		"attention.self.value", "attn_v",
		"attention.output.dense", "attn_output",
		"attention.output.LayerNorm", "attn_output_norm",
		"intermediate.dense", "ffn_up",
		"output.dense", "ffn_down",
		"output.LayerNorm", "layer_output_norm",
	).Replace(n)
}