"tests/test_models/test_detectors/test_votenet.py" did not exist on "360c27f95ed3fd185b4e1a14027eb9aa27df61fa"
convert_mixtral.go 2.06 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package convert

import (
	"fmt"
	"io"
	"slices"
	"strings"

	"github.com/ollama/ollama/llm"
)

type mixtral struct {
	llama
	NumLocalExperts    uint32 `json:"num_local_experts"`
	NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}

var _ Converter = (*mixtral)(nil)

func (p *mixtral) KV(t *Tokenizer) llm.KV {
	kv := p.llama.KV(t)

	if p.NumLocalExperts > 0 {
		kv["llama.expert_count"] = p.NumLocalExperts
	}

	if p.NumExpertsPerToken > 0 {
		kv["llama.expert_used_count"] = p.NumExpertsPerToken
	}

	return kv
}

Michael Yang's avatar
Michael Yang committed
34
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
Michael Yang's avatar
Michael Yang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
	oldnew := []string{
		"model.layers", "blk",
		"w1", "ffn_gate_exps",
		"w2", "ffn_down_exps",
		"w3", "ffn_up_exps",
	}

	for i := range p.NumLocalExperts {
		oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
	}

	// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
	namer := strings.NewReplacer(oldnew...)
	experts := make(map[string]experts)

	// merge experts into a single tensor while removing them from ts
	ts = slices.DeleteFunc(ts, func(t Tensor) bool {
		if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
			return false
		}

		name := namer.Replace(t.Name())
		experts[name] = append(experts[name], t)
		return true
	})

Michael Yang's avatar
Michael Yang committed
61
	var out []llm.Tensor
Michael Yang's avatar
Michael Yang committed
62
63
	for n, e := range experts {
		// TODO(mxyng): sanity check experts
Michael Yang's avatar
Michael Yang committed
64
		out = append(out, llm.Tensor{
Michael Yang's avatar
Michael Yang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
			Name:     n,
			Kind:     e[0].Kind(),
			Shape:    append([]uint64{uint64(len(e))}, e[0].Shape()...),
			WriterTo: e,
		})
	}

	return append(out, p.llama.Tensors(ts)...)
}

type experts []Tensor

func (e experts) WriteTo(w io.Writer) (int64, error) {
	// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
	for _, t := range e {
		// the canonical merged experts tensor stacks all experts along a new, 0 axis,
		// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
		// this accomplishes the same thing by writing each expert tensor in sequence
		if _, err := t.WriteTo(w); err != nil {
			return 0, err
		}
	}

	return 0, nil
}