"research/efficient-hrl/utils/utils.py" did not exist on "9b969ca5251dd284f8cf086c9b9b21132206404f"
convert_gemma.go 2.73 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
package convert

import (
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/llm"
)

type gemma struct {
	Parameters
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	HiddenSize            uint32  `json:"hidden_size"`
	HiddenLayers          uint32  `json:"num_hidden_layers"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	RMSNormEPS            float32 `json:"rms_norm_eps"`
	HeadDim               uint32  `json:"head_dim"`
}

var _ Converter = (*gemma)(nil)

func (p *gemma) KV(t *Tokenizer) llm.KV {
	kv := p.Parameters.KV(t)
	kv["general.architecture"] = "gemma"
	kv["general.name"] = "gemma"
	kv["gemma.context_length"] = p.MaxPositionEmbeddings
	kv["gemma.embedding_length"] = p.HiddenSize
	kv["gemma.block_count"] = p.HiddenLayers
	kv["gemma.feed_forward_length"] = p.IntermediateSize
	kv["gemma.attention.head_count"] = p.NumAttentionHeads
	kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
	kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
	kv["gemma.attention.key_length"] = p.HeadDim
	kv["gemma.attention.value_length"] = p.HeadDim
	kv["tokenizer.ggml.eot_token_id"] = uint32(107)
	kv["tokenizer.ggml.middle_token_id"] = uint32(68)
	kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
	kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
	return kv
}

Michael Yang's avatar
Michael Yang committed
46
47
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
	var out []llm.Tensor
Michael Yang's avatar
Michael Yang committed
48
49
50
51
52
53
	for _, t := range ts {
		name := p.tensorName(t.Name())
		if strings.HasSuffix(name, "_norm.weight") {
			t.SetRepacker(p.addOne)
		}

Michael Yang's avatar
Michael Yang committed
54
		out = append(out, llm.Tensor{
Michael Yang's avatar
Michael Yang committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
			Name:     name,
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

func (p *gemma) tensorName(n string) string {
	return strings.NewReplacer(
		"model.embed_tokens", "token_embd",
		"model.norm", "output_norm",
		"model.layers", "blk",
		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"mlp.gate_proj", "ffn_gate",
		"mlp.down_proj", "ffn_down",
		"mlp.up_proj", "ffn_up",
		"post_attention_layernorm", "ffn_norm",
		"block_sparse_moe.gate", "ffn_inp",
	).Replace(n)
}

func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
	n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
	ones := tensor.Ones(tensor.Float32, int(shape[0]))

	n, err := n.Add(ones)
	if err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 0)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}