llama-kv-cache.h 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#pragma once

#include "llama-batch.h"
#include "llama-graph.h"
#include "llama-kv-cells.h"
#include "llama-memory.h"

#include <unordered_map>
#include <vector>

struct llama_cparams;
struct llama_hparams;
struct llama_model;
struct llama_context;

//
Daniel Hiltgen's avatar
Daniel Hiltgen committed
17
// llama_kv_cache
18
19
//

Daniel Hiltgen's avatar
Daniel Hiltgen committed
20
class llama_kv_cache : public llama_memory_i {
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
public:
    struct stream_copy_info {
        bool empty() const {
            assert(ssrc.size() == sdst.size());
            return ssrc.empty();
        }

        std::vector<uint32_t> ssrc;
        std::vector<uint32_t> sdst;
    };

    // for each ubatch, create a slot_info that contains information about where the ubatch should be inserted in the
    //   KV cells. for example, cell indices for each token, such that: token[i] -> goes to cells[idxs[i]]
    struct slot_info {
        // data for ggml_set_rows
        using idx_vec_t = std::vector<uint32_t>;

        // number of streams: ns = s1 - s0 + 1
Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
40
        uint32_t s0;
        uint32_t s1;
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

        std::vector<llama_seq_id> strm; // [ns]
        std::vector<idx_vec_t>    idxs; // [ns]

        uint32_t head() const {
            GGML_ASSERT(idxs.size() == 1);
            GGML_ASSERT(!idxs[0].empty());

            return idxs[0][0];
        }

        void resize(size_t n) {
            strm.resize(n);
            idxs.resize(n);
        }

        size_t size() const {
            GGML_ASSERT(idxs.size() == strm.size());
            GGML_ASSERT(!idxs.empty());

            return idxs[0].size();
        }

        size_t n_stream() const {
            return strm.size();
        }

        bool empty() const {
            return idxs.empty();
        }

        void clear() {
            idxs.clear();
        }
    };

    using slot_info_vec_t = std::vector<slot_info>;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    llama_kv_cache(
            const llama_model & model,
                    ggml_type   type_k,
                    ggml_type   type_v,
                         bool   v_trans,
                         bool   offload,
                         bool   unified,
                     uint32_t   kv_size,
                     uint32_t   n_seq_max,
                     uint32_t   n_pad,
                     uint32_t   n_swa,
               llama_swa_type   swa_type,
        const layer_filter_cb & filter,
        const  layer_reuse_cb & reuse);

    ~llama_kv_cache() = default;
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    //
    // llama_memory_i
    //

    llama_memory_context_ptr init_batch(
            llama_batch_allocr & balloc,
            uint32_t n_ubatch,
            bool embd_all) override;

    llama_memory_context_ptr init_full() override;

    llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override;

    bool get_can_shift() const override;

    void clear(bool data) override;

    bool seq_rm  (llama_seq_id seq_id,                              llama_pos p0, llama_pos p1) override;
    void seq_cp  (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
    void seq_keep(llama_seq_id seq_id)                                                          override;
    void seq_add (llama_seq_id seq_id,                              llama_pos p0, llama_pos p1, llama_pos shift) override;
    void seq_div (llama_seq_id seq_id,                              llama_pos p0, llama_pos p1, int d) override;

    llama_pos seq_pos_min(llama_seq_id seq_id) const override;
    llama_pos seq_pos_max(llama_seq_id seq_id) const override;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
122
123
    std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;

124
125
    // state write/load

Daniel Hiltgen's avatar
Daniel Hiltgen committed
126
127
    void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
    void state_read (llama_io_read_i  & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) override;
128
129

    //
Daniel Hiltgen's avatar
Daniel Hiltgen committed
130
    // llama_kv_cache specific API
131
132
133
134
135
136
137
138
139
140
141
    //

    uint32_t get_size()     const;
    uint32_t get_n_stream() const;

    bool get_has_shift() const;

    //
    // graph_build API
    //

Daniel Hiltgen's avatar
Daniel Hiltgen committed
142
    uint32_t get_n_kv(const slot_info & sinfo) const;
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    // get views of the current state of the cache
    ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;
    ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const;

    // store k_cur and v_cur in the cache based on the provided head location
    ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const;
    ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const;

    //
    // preparation API
    //

    // find places for the provided ubatches in the cache, returns the slot infos
    // return empty vector on failure
    slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
160
    bool update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info);
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

    // find a slot of kv cells that can hold the ubatch
    // if cont == true, then the slot must be continuous
    // return empty slot_info on failure
    slot_info find_slot(const llama_ubatch & ubatch, bool cont) const;

    // emplace the ubatch context into slot: [sinfo.idxs[0...ubatch.n_tokens - 1]]
    void apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch);

    //
    // input API
    //

    ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
    ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;

    void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;
    void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const;

    void set_input_k_shift(ggml_tensor * dst) const;

    void set_input_kq_mask   (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
    void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;

private:
    const llama_model & model;
    const llama_hparams & hparams;

    struct kv_layer {
        // layer index in the model
        // note: can be different from the layer index in the KV cache
        uint32_t il;

        ggml_tensor * k;
        ggml_tensor * v;

        std::vector<ggml_tensor *> k_stream;
        std::vector<ggml_tensor *> v_stream;
    };

    bool v_trans = true;  // the value tensor is transposed

    const uint32_t n_seq_max = 1;
    const uint32_t n_stream  = 1;

    // required padding
    const uint32_t n_pad = 1;

    // SWA
    const uint32_t n_swa = 0;

    // env: LLAMA_KV_CACHE_DEBUG
    int debug = 0;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
215
    // this is the SWA type of the cache - not to be confused with the model SWA type
216
217
    const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
218
219
    // ggml contexts for the KV cache along with the allocated backend buffers:
    std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
220
221
222
223
224

    // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
    // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
    std::vector<uint32_t> v_heads;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
225
    std::vector<llama_kv_cells> v_cells;
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    // maps from a sequence id to a stream id
    std::vector<uint32_t> seq_to_stream;

    // pending stream copies that will be applied during the next update
    stream_copy_info sc_info;

    std::vector<kv_layer> layers;

    // model layer id -> KV cache layer id
    std::unordered_map<int32_t, int32_t> map_layer_ids;

    size_t total_size() const;

    size_t size_k_bytes() const;
    size_t size_v_bytes() const;

    bool is_masked_swa(llama_pos p0, llama_pos p1) const;

    ggml_tensor * build_rope_shift(
            const llama_cparams & cparams,
                   ggml_context * ctx,
                    ggml_tensor * cur,
                    ggml_tensor * shift,
                    ggml_tensor * factors,
                          float   freq_base,
                          float   freq_scale) const;

    ggml_cgraph * build_graph_shift(
               llm_graph_result * res,
                  llama_context * lctx) const;

    struct cell_ranges_t {
        uint32_t strm;

        std::vector<std::pair<uint32_t, uint32_t>> data; // ranges, from inclusive, to exclusive
    };

    void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const;
    void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const;

    bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
    bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count);
};

Daniel Hiltgen's avatar
Daniel Hiltgen committed
271
class llama_kv_cache_context : public llama_memory_context_i {
272
273
public:
    // some shorthands
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274
275
    using slot_info_vec_t  = llama_kv_cache::slot_info_vec_t;
    using stream_copy_info = llama_kv_cache::stream_copy_info;
276
277

    // used for errors
Daniel Hiltgen's avatar
Daniel Hiltgen committed
278
    llama_kv_cache_context(llama_memory_status status);
279
280

    // used to create a full-cache context
Daniel Hiltgen's avatar
Daniel Hiltgen committed
281
282
    llama_kv_cache_context(
            llama_kv_cache * kv);
283
284

    // used to create an update context
Daniel Hiltgen's avatar
Daniel Hiltgen committed
285
286
    llama_kv_cache_context(
            llama_kv_cache * kv,
287
288
289
290
291
            llama_context * lctx,
            bool do_shift,
            stream_copy_info sc_info);

    // used to create a batch procesing context from a batch
Daniel Hiltgen's avatar
Daniel Hiltgen committed
292
293
    llama_kv_cache_context(
            llama_kv_cache * kv,
294
295
296
            slot_info_vec_t sinfos,
            std::vector<llama_ubatch> ubatches);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
297
    virtual ~llama_kv_cache_context();
298
299
300
301
302
303
304
305
306
307
308
309

    //
    // llama_memory_context_i
    //

    bool next()  override;
    bool apply() override;

    llama_memory_status  get_status() const override;
    const llama_ubatch & get_ubatch() const override;

    //
Daniel Hiltgen's avatar
Daniel Hiltgen committed
310
    // llama_kv_cache_context specific API
311
312
313
314
315
316
317
318
319
    //

    uint32_t get_n_kv() const;

    // get views of the current state of the cache
    ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
    ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;

    // store k_cur and v_cur in the cache based on the provided head location
Daniel Hiltgen's avatar
Daniel Hiltgen committed
320
321
322
323
324
    // note: the heads in k_cur and v_cur should be layed out contiguously in memory
    //   - k_cur  [n_embd_head_k, n_head_k, n_tokens]
    //   - k_idxs [n_tokens]
    //   - v_cur  [n_embd_head_v, n_head_v, n_tokens]
    //   - v_idxs [n_tokens] or [n_tokens*n_embd_v_gqa] depending if V cache is transposed
325
326
327
    ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const;
    ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
328
329
330
    // create destination indices for each head of the current batch for where it would be written in the KV cache
    // the indices address the global KV cache (not per stream) - this is not relevant for the user of this API, but
    //   helps understand the implementation logic of cpy_k and cpy_v
331
332
333
334
335
336
337
338
339
340
341
342
343
    ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;
    ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const;

    void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const;
    void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const;

    void set_input_k_shift   (ggml_tensor * dst) const;
    void set_input_kq_mask   (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
    void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;

private:
    llama_memory_status status;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
344
    llama_kv_cache * kv;
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    llama_context * lctx;

    //
    // update context
    //

    bool do_shift = false;

    stream_copy_info sc_info;

    //
    // batch processing context
    //

    // the index of the cur ubatch to process
    size_t i_cur = 0;

    slot_info_vec_t sinfos;

    std::vector<llama_ubatch> ubatches;

    //
    // data needed for building the compute graph for the current ubatch:
    //

    // a heuristic, to avoid attending the full cache if it is not yet utilized
    // as the cache gets filled, the benefit from this heuristic disappears
    int32_t n_kv;
};