llama-kv-cache.cpp 66.7 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
#include "llama-kv-cache.h"
2
3
4
5
6
7
8
9
10

#include "llama-impl.h"
#include "llama-io.h"
#include "llama-model.h"
#include "llama-context.h"

#include <algorithm>
#include <cassert>
#include <cmath>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
11
#include <cstring>
12
13
14
15
16
#include <limits>
#include <map>
#include <stdexcept>

//
Daniel Hiltgen's avatar
Daniel Hiltgen committed
17
// llama_kv_cache
18
19
//

Daniel Hiltgen's avatar
Daniel Hiltgen committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
llama_kv_cache::llama_kv_cache(
        const llama_model & model,
                ggml_type   type_k,
                ggml_type   type_v,
                     bool   v_trans,
                     bool   offload,
                     bool   unified,
                 uint32_t   kv_size,
                 uint32_t   n_seq_max,
                 uint32_t   n_pad,
                 uint32_t   n_swa,
           llama_swa_type   swa_type,
    const layer_filter_cb & filter,
    const  layer_reuse_cb & reuse) :
34
35
36
37
38
    model(model), hparams(model.hparams), v_trans(v_trans),
    n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {

    GGML_ASSERT(kv_size % n_pad == 0);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
    const uint32_t n_layer_kv = hparams.n_layer_kv();
40

Daniel Hiltgen's avatar
Daniel Hiltgen committed
41
42
43
44
45
46
47
48
    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
    struct ggml_backend_buft_comparator {
        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
            return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
        }
    };
    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;

49
50
51
52
53
    // create a context for each buffer type
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            ggml_init_params params = {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
54
                /*.mem_size   =*/ size_t(2u*(1 + n_stream)*n_layer_kv*ggml_tensor_overhead()),
55
56
57
58
59
60
61
62
63
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };

            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                return nullptr;
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
64
            ctx_map.emplace(buft, ctx);
65
66
67
68

            return ctx;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
        return it->second.get();
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    };

    GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);

    v_heads.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_heads[s] = 0;
    }

    v_cells.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_cells[s].resize(kv_size);
    }

    // by default, all sequence ids are mapped to the 0th stream
    seq_to_stream.resize(LLAMA_MAX_SEQ, 0);

    if (n_stream > 1) {
        seq_to_stream.resize(n_stream, 0);
        for (uint32_t s = 0; s < n_stream; ++s) {
            seq_to_stream[s] = s;
        }
    }

    // [TAG_V_CACHE_VARIABLE]
    if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
        LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
                __func__, hparams.n_embd_v_gqa_max());
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
100
101
102
103
104
105
    for (uint32_t il = 0; il < hparams.n_layer; il++) {
        if (!hparams.has_kv(il)) {
            LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il);
            continue;
        }

106
        if (filter && !filter(il)) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
107
            LLAMA_LOG_DEBUG("%s: layer %3d: filtered\n", __func__, il);
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            continue;
        }

        // [TAG_V_CACHE_VARIABLE]
        const uint32_t n_embd_k_gqa =            hparams.n_embd_k_gqa(il);
        const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();

        const char * dev_name = "CPU";

        ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();

        if (offload) {
            auto * dev = model.dev_layer(il);
            buft = ggml_backend_dev_buffer_type(dev);

            dev_name = ggml_backend_dev_name(dev);
        }

        LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);

        ggml_context * ctx = ctx_for_buft(buft);
        if (!ctx) {
            throw std::runtime_error("failed to create ggml context for kv cache");
        }

133
134
        ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
        ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

        ggml_format_name(k, "cache_k_l%d", il);
        ggml_format_name(v, "cache_v_l%d", il);

        std::vector<ggml_tensor *> k_stream;
        std::vector<ggml_tensor *> v_stream;

        for (uint32_t s = 0; s < n_stream; ++s) {
            k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
            v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
        }

        map_layer_ids[il] = layers.size();

        layers.push_back({ il, k, v, k_stream, v_stream, });
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
152
153
    if (reuse) {
        LLAMA_LOG_DEBUG("%s: reusing layers:\n", __func__);
154

Daniel Hiltgen's avatar
Daniel Hiltgen committed
155
156
157
158
159
        for (uint32_t il = 0; il < hparams.n_layer; il++) {
            const int32_t il_reuse = reuse(il);

            if (il_reuse < 0) {
                LLAMA_LOG_DEBUG("%s: - layer %3d: no reuse\n", __func__, il);
160
161
162
                continue;
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
163
164
165
166
            if (filter && !filter(il)) {
                LLAMA_LOG_DEBUG("%s: - layer %3d: filtered\n", __func__, il);
                continue;
            }
167
168

            GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
169

170
171
            map_layer_ids[il] = map_layer_ids[il_reuse];

Daniel Hiltgen's avatar
Daniel Hiltgen committed
172
            LLAMA_LOG_DEBUG("%s: - layer %3d: reuse layer %d, is_swa = %d\n", __func__, il, il_reuse, hparams.is_swa(il));
173
174
175
176
        }
    }

    // allocate tensors and initialize the buffers to avoid NaNs in the padding
Daniel Hiltgen's avatar
Daniel Hiltgen committed
177
178
    for (auto & [buft, ctx] : ctx_map) {
        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
179
180
181
182
183
184
185
        if (!buf) {
            throw std::runtime_error("failed to allocate buffer for kv cache");
        }

        LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);

        ggml_backend_buffer_clear(buf, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
186
        ctxs_bufs.emplace_back(std::move(ctx), buf);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    }

    {
        const size_t memory_size_k = size_k_bytes();
        const size_t memory_size_v = size_v_bytes();

        LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
    }

    const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
    debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
203
void llama_kv_cache::clear(bool data) {
204
205
206
207
208
209
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_cells[s].reset();
        v_heads[s] = 0;
    }

    if (data) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
210
        for (auto & [_, buf] : ctxs_bufs) {
211
212
213
214
215
            ggml_backend_buffer_clear(buf.get(), 0);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
216
217
bool llama_kv_cache::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
218
219
220
221
222
223
224
225
226
227

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    if (seq_id >= 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
228
229
230
231
232
        auto & cells = v_cells[seq_to_stream[seq_id]];
        auto & head  = v_heads[seq_to_stream[seq_id]];

        uint32_t new_head = cells.size();

233
234
235
236
237
238
239
240
241
242
243
        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.pos_in(i, p0, p1)) {
                continue;
            }

            if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
                if (new_head == cells.size()) {
                    new_head = i;
                }
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
244
245
246
247
248

        // If we freed up a slot, set head to it so searching can start there.
        if (new_head != cells.size() && new_head < head) {
            head = new_head;
        }
249
250
    } else {
        // match any sequence
Daniel Hiltgen's avatar
Daniel Hiltgen committed
251
252
253
        for (uint32_t s = 0; s < n_stream; ++s) {
            auto & cells = v_cells[s];
            auto & head  = v_heads[s];
254

Daniel Hiltgen's avatar
Daniel Hiltgen committed
255
            uint32_t new_head = cells.size();
256

Daniel Hiltgen's avatar
Daniel Hiltgen committed
257
258
259
260
261
262
263
264
265
266
            for (uint32_t i = 0; i < cells.size(); ++i) {
                if (!cells.pos_in(i, p0, p1)) {
                    continue;
                }

                cells.rm(i);

                if (new_head == cells.size()) {
                    new_head = i;
                }
267
268
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
269
270
271
272
273
            // If we freed up a slot, set head to it so searching can start there.
            if (new_head != cells.size() && new_head < head) {
                head = new_head;
            }
        }
274
275
276
277
278
    }

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
279
void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
    GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());

    const auto s0 = seq_to_stream[seq_id_src];
    const auto s1 = seq_to_stream[seq_id_dst];

    if (s0 == s1) {
        // since both sequences are in the same stream, no data copy is necessary
        // we just have to update the cells meta data

        auto & cells = v_cells[s0];

        if (seq_id_src == seq_id_dst) {
            return;
        }

        if (p0 < 0) {
            p0 = 0;
        }

        if (p1 < 0) {
            p1 = std::numeric_limits<llama_pos>::max();
        }

        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.pos_in(i, p0, p1)) {
                continue;
            }

            if (cells.seq_has(i, seq_id_src)) {
                cells.seq_add(i, seq_id_dst);
            }
        }

        return;
    }

    // cross-stream sequence copies require to copy the actual buffer data

    bool is_full = true;

    if (p0 > 0 && p0 + 1 < (int) get_size()) {
        is_full = false;
    }

    if (p1 > 0 && p1 + 1 < (int) get_size()) {
        is_full = false;
    }

    GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");

    // enqueue the copy operation - the buffer copy will be performed during the next update
    sc_info.ssrc.push_back(s0);
    sc_info.sdst.push_back(s1);

    v_cells[s1].reset();
    for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
        if (v_cells[s0].seq_has(i, seq_id_src)) {
            llama_pos pos   = v_cells[s0].pos_get(i);
            llama_pos shift = v_cells[s0].get_shift(i);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
341
342
            llama_kv_cell_ext ext = v_cells[s0].ext_get(i);

343
344
345
346
347
348
349
350
351
352
353
            if (shift != 0) {
                pos -= shift;
                assert(pos >= 0);
            }

            v_cells[s1].pos_set(i, pos);
            v_cells[s1].seq_add(i, seq_id_dst);

            if (shift != 0) {
                v_cells[s1].pos_add(i, shift);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
354
355

            v_cells[s1].ext_set(i, ext);
356
357
358
359
360
361
362
363
364
365
        }
    }

    v_heads[s1] = v_heads[s0];

    //for (uint32_t s = 0; s < n_stream; ++s) {
    //    LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
    //}
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
366
void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    auto & cells = v_cells[seq_to_stream[seq_id]];
    auto & head  = v_heads[seq_to_stream[seq_id]];

    uint32_t new_head = cells.size();

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (cells.seq_keep(i, seq_id)) {
            if (new_head == cells.size()) {
                new_head = i;
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != cells.size() && new_head < head) {
        head = new_head;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
388
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
389
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
390
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1");
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

    auto & cells = v_cells[seq_to_stream[seq_id]];
    auto & head  = v_heads[seq_to_stream[seq_id]];

    if (shift == 0) {
        return;
    }

    uint32_t new_head = cells.size();

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over all cells.
    if (p0 == p1) {
        return;
    }

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (!cells.pos_in(i, p0, p1)) {
            continue;
        }

        if (cells.seq_has(i, seq_id)) {
            if (cells.pos_add(i, shift)) {
                if (new_head == cells.size()) {
                    new_head = i;
                }
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    // Otherwise we just start the next search from the beginning.
    head = new_head != cells.size() ? new_head : 0;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
433
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
434
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
435
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1");
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

    auto & cells = v_cells[seq_to_stream[seq_id]];

    if (d == 1) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the cache.
    if (p0 == p1) {
        return;
    }

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (!cells.pos_in(i, p0, p1)) {
            continue;
        }

        if (cells.seq_has(i, seq_id)) {
            cells.pos_div(i, d);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
467
llama_pos llama_kv_cache::seq_pos_min(llama_seq_id seq_id) const {
468
469
470
471
472
473
474
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    const auto & cells = v_cells[seq_to_stream[seq_id]];

    return cells.seq_pos_min(seq_id);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
475
llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
476
477
478
479
480
481
482
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    const auto & cells = v_cells[seq_to_stream[seq_id]];

    return cells.seq_pos_max(seq_id);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
483
484
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
    std::map<ggml_backend_buffer_type_t, size_t> ret;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
485
486
    for (const auto & [_, buf] : ctxs_bufs) {
        ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
487
488
489
490
491
    }
    return ret;
}

llama_memory_context_ptr llama_kv_cache::init_batch(
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
            llama_batch_allocr & balloc,
            uint32_t n_ubatch,
            bool embd_all) {
    GGML_UNUSED(embd_all);

    do {
        balloc.split_reset();

        std::vector<llama_ubatch> ubatches;
        while (true) {
            auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);

            if (ubatch.n_tokens == 0) {
                break;
            }

            ubatches.push_back(std::move(ubatch)); // NOLINT
        }

        if (balloc.get_n_used() < balloc.get_n_tokens()) {
            // failed to find a suitable split
            break;
        }

        auto sinfos = prepare(ubatches);
        if (sinfos.empty()) {
            break;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
521
        return std::make_unique<llama_kv_cache_context>(
522
523
524
                this, std::move(sinfos), std::move(ubatches));
    } while (false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
525
    return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
526
527
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
528
529
llama_memory_context_ptr llama_kv_cache::init_full() {
    return std::make_unique<llama_kv_cache_context>(this);
530
531
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
532
533
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
    GGML_UNUSED(optimize);
534

Daniel Hiltgen's avatar
Daniel Hiltgen committed
535
    bool do_shift = get_has_shift();
536

Daniel Hiltgen's avatar
Daniel Hiltgen committed
537
    return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
538
539
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
540
541
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
    llama_kv_cache::slot_info_vec_t res;
542
543
544
545
546
547

    struct state_t {
        slot_info sinfo; // slot info for the ubatch

        std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch

Daniel Hiltgen's avatar
Daniel Hiltgen committed
548
        std::vector<llama_kv_cells> v_cells; // copy of the old cells, before placing the ubatch
549
550
551
552
553
554
555
556
557
    };

    // remember the old state of the cells so we can restore it in the end
    std::vector<state_t> states;

    bool success = true;

    for (const auto & ubatch : ubatches) {
        // only find a suitable slot for the ubatch. don't modify the cells yet
Daniel Hiltgen's avatar
Daniel Hiltgen committed
558
        const auto sinfo_new = find_slot(ubatch, false);
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        if (sinfo_new.empty()) {
            success = false;
            break;
        }

        // remeber the position that we found
        res.push_back(sinfo_new);

        // store the old state of the cells in the recovery stack
        {
            state_t state = { sinfo_new, v_heads, {} };

            for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
                auto & cells = v_cells[sinfo_new.strm[s]];

                state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
            }

            states.push_back(std::move(state));
        }

        // now emplace the ubatch
        apply_ubatch(sinfo_new, ubatch);
    }

    GGML_ASSERT(!states.empty() || !success);

    // iterate backwards and restore the cells to their original state
    for (auto it = states.rbegin(); it != states.rend(); ++it) {
        const auto & sinfo = it->sinfo;

        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            auto & cells = v_cells[sinfo.strm[s]];
            auto & head  = v_heads[sinfo.strm[s]];

            cells.set(sinfo.idxs[s], it->v_cells[s]);
            head = it->v_heads_old[s];
        }
    }

    if (!success) {
        return {};
    }

    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
606
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    bool updated = false;

    auto * sched = lctx->get_sched();

    if (!sc_info.empty()) {
        assert(n_stream > 1 && "stream copy should never happen with a single stream");

        llama_synchronize(lctx);

        const size_t n_copy = sc_info.ssrc.size();

        for (size_t i = 0; i < n_copy; ++i) {
            const auto ssrc = sc_info.ssrc[i];
            const auto sdst = sc_info.sdst[i];

            assert(ssrc < n_stream);
            assert(sdst < n_stream);

            LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);

            assert(ssrc != sdst);

            for (uint32_t il = 0; il < layers.size(); ++il) {
                const auto & layer = layers[il];

                ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
                ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
            }
        }
    }

    if (do_shift) {
        if (!get_can_shift()) {
            GGML_ABORT("The current KV cache / model configuration does not support K-shift");
        }

        LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);

        // apply K-shift if needed
        if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
            ggml_backend_sched_reset(sched);

            auto * res = lctx->get_gf_res_reserve();

            res->reset();

            auto * gf = build_graph_shift(res, lctx);
            if (!ggml_backend_sched_alloc_graph(sched, gf)) {
                LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
                return updated;
            }

            res->set_inputs(nullptr);

            if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
                LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
                return updated;
            }

            updated = true;
        }

        for (uint32_t s = 0; s < n_stream; ++s) {
            auto & cells = v_cells[s];

            cells.reset_shift();
        }
    }

    return updated;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
679
llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch, bool cont) const {
680

Daniel Hiltgen's avatar
Daniel Hiltgen committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    if (debug > 0) {
        for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
            const auto seq_id = ubatch.seq_id_unq[s];
            const auto stream_id = seq_to_stream[seq_id];
            const auto & cells = v_cells[stream_id];
            const uint32_t head_cur = v_heads[stream_id];

            LLAMA_LOG_DEBUG("%s: stream[%d], n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
                    __func__, stream_id, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);

            if ((debug == 2 && n_swa > 0) || debug > 2) {
                std::string ss;
                for (uint32_t i = 0; i < cells.size(); ++i) {
                    if (cells.is_empty(i)) {
                        ss += '.';
                    } else {
                        assert(cells.seq_count(i) >= 1);
698

Daniel Hiltgen's avatar
Daniel Hiltgen committed
699
700
701
702
703
704
705
706
707
708
709
710
711
                        if (cells.seq_count(i) == 1) {
                            ss += std::to_string(cells.seq_get(i));
                        } else {
                            ss += 'M';
                        }
                    }
                    if (i%256 == 255) {
                        ss += " *";
                        ss += '\n';
                    }
                }
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
            }
712

Daniel Hiltgen's avatar
Daniel Hiltgen committed
713
714
715
716
717
718
            if ((debug == 2 && n_swa > 0) || debug > 2) {
                std::string ss;
                for (uint32_t i = 0; i < cells.size(); ++i) {
                    std::string cur;
                    if (cells.is_empty(i)) {
                        cur = '.';
719
                    } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
720
721
722
723
724
725
726
727
728
729
730
731
                        cur = std::to_string(cells.pos_get(i));
                    }
                    const int n = cur.size();
                    for (int j = 0; j < 5 - n; ++j) {
                        cur += ' ';
                    }
                    ss += cur;
                    if (i%256 == 255) {
                        ss += " *";
                    }
                    if (i%64 == 63) {
                        ss += '\n';
732
733
                    }
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
734
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
735
736
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
737
738
739
            for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
                if (cells.seq_pos_min(s) < 0) {
                    continue;
740
741
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
742
                LLAMA_LOG_DEBUG("%s: stream[%d] min[%d] = %5d, max[%d] = %5d\n", __func__, stream_id, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
            }
        }
    }

    uint32_t n_tokens = ubatch.n_tokens;
    uint32_t n_seqs   = 1;

    if (n_stream > 1) {
        GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);

        n_seqs   = ubatch.n_seqs_unq;
        n_tokens = n_tokens / n_seqs;
    }

    slot_info res = {
        /*.s0   =*/ LLAMA_MAX_SEQ,
        /*.s1   =*/ 0,
        /*.strm =*/ { },
        /*.idxs =*/ { },
    };

    res.resize(n_seqs);

    for (uint32_t s = 0; s < n_seqs; ++s) {
        const auto seq_id = ubatch.seq_id_unq[s];

        if (n_stream > 1) {
            GGML_ASSERT(ubatch.n_seq_id[s*n_tokens]    == 1);
            GGML_ASSERT(ubatch.seq_id  [s*n_tokens][0] == seq_id);
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
774
775
        res.s0 = std::min<uint32_t>(res.s0, seq_to_stream[seq_id]);
        res.s1 = std::max<uint32_t>(res.s1, seq_to_stream[seq_id]);
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

        res.strm[s] = seq_to_stream[seq_id];
        res.idxs[s].reserve(n_tokens);

        const auto & cells = v_cells[seq_to_stream[seq_id]];

        uint32_t head_cur = v_heads[seq_to_stream[seq_id]];

        // if we have enough unused cells before the current head ->
        //   better to start searching from the beginning of the cache, hoping to fill it
        if (head_cur > cells.get_used() + 2*n_tokens) {
            head_cur = 0;
        }

        if (n_tokens > cells.size()) {
            LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
            return { };
        }

        uint32_t n_tested = 0;

        // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
        // for non-continuous slots, we test the tokens one by one
        const uint32_t n_test = cont ? n_tokens : 1;

        while (true) {
            if (head_cur + n_test > cells.size()) {
                n_tested += cells.size() - head_cur;
                head_cur = 0;
                continue;
            }

            for (uint32_t i = 0; i < n_test; i++) {
                const auto idx = head_cur;

                head_cur++;
                n_tested++;

                //const llama_pos    pos    = ubatch.pos[i];
                //const llama_seq_id seq_id = ubatch.seq_id[i][0];

                // can we use this cell? either:
                //  - the cell is empty
                //  - the cell is occupied only by one sequence:
                //    - (disabled) mask causally, if the sequence is the same as the one we are inserting
                //    - mask SWA, using current max pos for that sequence in the cache
                //                always insert in the cell with minimum pos
                bool can_use = cells.is_empty(idx);

                if (!can_use && cells.seq_count(idx) == 1) {
                    const llama_pos pos_cell = cells.pos_get(idx);

                    // (disabled) causal mask
                    // note: it's better to purge any "future" tokens beforehand
                    //if (cells.seq_has(idx, seq_id)) {
                    //    can_use = pos_cell >= pos;
                    //}

                    if (!can_use) {
                        const llama_seq_id seq_id_cell = cells.seq_get(idx);

                        // SWA mask
                        if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
                            can_use = true;
                        }
                    }
                }

                if (can_use) {
                    res.idxs[s].push_back(idx);
                } else {
                    if (cont) {
                        break;
                    }
                }
            }

            if (res.idxs[s].size() == n_tokens) {
                break;
            }

            if (cont) {
                res.idxs[s].clear();
            }

            if (n_tested >= cells.size()) {
                //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
                return { };
            }
        }

        // we didn't find a suitable slot - return empty result
        if (res.idxs[s].size() < n_tokens) {
            return { };
        }
    }

    assert(res.s1 >= res.s0);

    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
878
void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    // keep track of the max sequence position that we would overwrite with this ubatch
    // for non-SWA cache, this would be always empty
    llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
        seq_pos_max_rm[s] = -1;
    }

    assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());

    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
            const uint32_t i = s*sinfo.size() + ii;

            auto & cells = v_cells[sinfo.strm[s]];

            const auto idx = sinfo.idxs[s][ii];

            if (!cells.is_empty(idx)) {
                assert(cells.seq_count(idx) == 1);

                const llama_seq_id seq_id = cells.seq_get(idx);
                const llama_pos    pos    = cells.pos_get(idx);

                seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);

                cells.rm(idx);
            }

            cells.pos_set(idx, ubatch.pos[i]);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
909
910
911
912
913
914
915
916
            if (ubatch.is_pos_2d()) {
                llama_kv_cell_ext ext {
                    /*.x =*/ ubatch.pos[i + ubatch.n_tokens*2],
                    /*.y =*/ ubatch.pos[i + ubatch.n_tokens],
                };
                cells.ext_set(idx, ext);
            }

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
            for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
                cells.seq_add(idx, ubatch.seq_id[i][s]);
            }
        }
    }

    // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
    //       will be present in the cache. so we have to purge any position which is less than those we would overwrite
    //       ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
        if (seq_pos_max_rm[s] == -1) {
            continue;
        }

        GGML_ASSERT(s < seq_to_stream.size());

        auto & cells = v_cells[seq_to_stream[s]];

        if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
            LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
                    __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);

            seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
        }
    }

    // move the head at the end of the slot
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        auto & head = v_heads[sinfo.strm[s]];

        head = sinfo.idxs[s].back() + 1;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
951
bool llama_kv_cache::get_can_shift() const {
952
953
954
    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
955
uint32_t llama_kv_cache::get_size() const {
956
957
958
959
960
    const auto & cells = v_cells[seq_to_stream[0]];

    return cells.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
961
uint32_t llama_kv_cache::get_n_stream() const {
962
963
964
    return n_stream;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
965
bool llama_kv_cache::get_has_shift() const {
966
967
968
969
970
971
972
973
974
    bool result = false;

    for (uint32_t s = 0; s < n_stream; ++s) {
        result |= v_cells[s].get_has_shift();
    }

    return result;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
975
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
976
977
    uint32_t result = 0;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
978
979
980
981
    // pad the n_kv value so that the graph remains constant across batches and can be reused
    // note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
    const uint32_t n_pad_cur = std::max(n_pad, 256u);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
982
983
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        const auto & cells = v_cells[sinfo.strm[s]];
984

Daniel Hiltgen's avatar
Daniel Hiltgen committed
985
        result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
986
987
988
989
990
    }

    return result;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
991
ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
    const int32_t ikv = map_layer_ids.at(il);

    auto * k = layers[ikv].k;

    const uint64_t kv_size      = get_size();
    const uint64_t n_embd_k_gqa = k->ne[0];

    assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));

    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;

    return ggml_view_4d(ctx, k,
            hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
            ggml_row_size(k->type, hparams.n_embd_head_k),
            ggml_row_size(k->type, n_embd_k_gqa),
            ggml_row_size(k->type, n_embd_k_gqa*kv_size),
            ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1011
ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    const int32_t ikv = map_layer_ids.at(il);

    auto * v = layers[ikv].v;

    const uint64_t kv_size      = get_size();
    const uint64_t n_embd_v_gqa = v->ne[0];

    // [TAG_V_CACHE_VARIABLE]
    assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));

    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;

    if (!v_trans) {
        // note: v->nb[1] <= v->nb[2]
        return ggml_view_4d(ctx, v,
                hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1028
1029
1030
                ggml_row_size(v->type, hparams.n_embd_head_v),          // v->nb[1]
                ggml_row_size(v->type, n_embd_v_gqa),                   // v->nb[2]
                ggml_row_size(v->type, n_embd_v_gqa*kv_size),           // v->nb[3]
1031
1032
1033
1034
1035
1036
                ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
    }

    // note: v->nb[1] > v->nb[2]
    return ggml_view_4d(ctx, v,
            n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1037
1038
1039
            ggml_row_size(v->type, kv_size*hparams.n_embd_head_v),  // v->nb[1]
            ggml_row_size(v->type, kv_size),                        // v->nb[2]
            ggml_row_size(v->type, kv_size*n_embd_v_gqa),           // v->nb[3]
1040
1041
1042
            ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1043
1044
1045
ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
    GGML_UNUSED(sinfo);

1046
1047
    const int32_t ikv = map_layer_ids.at(il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1048
    ggml_tensor * k = layers[ikv].k;
1049

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1050
1051
1052
    const int64_t n_embd_head = k_cur->ne[0];
    const int64_t n_head      = k_cur->ne[1];
    const int64_t n_tokens    = k_cur->ne[2];
1053

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1054
    const int64_t n_embd_gqa = n_embd_head*n_head;
1055

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1056
1057
1058
    // we can merge dims 0 and 1
    // TODO: add ggml helper function for this?
    GGML_ASSERT(ggml_row_size(k_cur->type, n_embd_head) == k_cur->nb[1]);
1059

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1060
    k_cur = ggml_view_2d(ctx, k_cur, n_embd_gqa, n_tokens, k_cur->nb[2], 0);
1061

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1062
    const int64_t n_stream = k->ne[2];
1063

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1064
1065
    if (n_stream > 1) {
        const int64_t kv_size = get_size();
1066

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1067
1068
        assert(n_embd_gqa == k->ne[0]);
        assert(kv_size    == k->ne[1]);
1069

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1070
1071
1072
1073
1074
1075
        // merge the buffer across all streams because the idxs are global
        k = ggml_reshape_2d(ctx, k, n_embd_gqa, kv_size*n_stream);
    }

    // store the current K values into the cache
    return ggml_set_rows(ctx, k, k_cur, k_idxs);
1076
1077
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1078
1079
1080
ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
    GGML_UNUSED(sinfo);

1081
1082
1083
1084
    const int32_t ikv = map_layer_ids.at(il);

    auto * v = layers[ikv].v;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1085
1086
1087
    const int64_t n_embd_head = v_cur->ne[0];
    const int64_t n_head      = v_cur->ne[1];
    const int64_t n_tokens    = v_cur->ne[2];
1088

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1089
    const int64_t n_embd_gqa = n_embd_head*n_head;
1090

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1091
1092
    // we can merge dims 0 and 1
    GGML_ASSERT(ggml_row_size(v_cur->type, n_embd_head) == v_cur->nb[1]);
1093

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1094
    const int64_t n_stream = v->ne[2];
1095

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1096
1097
1098
    // take this branch when FA is enabled (the V cache is not transposed)
    if (!v_trans) {
        v_cur = ggml_view_2d(ctx, v_cur, n_embd_gqa, n_tokens, v_cur->nb[2], 0);
1099

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1100
1101
        if (n_stream > 1) {
            const int64_t kv_size = get_size();
1102

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1103
1104
            assert(n_embd_gqa == v->ne[0]);
            assert(kv_size    == v->ne[1]);
1105

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1106
1107
1108
            // merge the buffer across all streams because the idxs are global
            v = ggml_reshape_2d(ctx, v, n_embd_gqa, kv_size*n_stream);
        }
1109

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1110
1111
        return ggml_set_rows(ctx, v, v_cur, v_idxs);
    }
1112

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1113
1114
1115
    if (ggml_row_size(v_cur->type, n_embd_gqa) == v_cur->nb[2]) {
        // we can merge dims 0, 1 and 2
        v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens);
1116
    } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1117
1118
1119
        // otherwise -> make a copy to get contiguous data
        v_cur = ggml_cont_2d   (ctx, v_cur, n_embd_gqa, n_tokens);
    }
1120

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1121
1122
1123
    // [TAG_V_CACHE_VARIABLE]
    if (n_embd_gqa < v->ne[0]) {
        v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_gqa, 0, 0, 0);
1124
1125
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1126
1127
1128
1129
1130
1131
    // in this branch the v_idxs are constructed in such a way that each row is a single head element
    ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, ggml_nelements(v));

    v_cur = ggml_reshape_2d(ctx, v_cur, 1, ggml_nelements(v_cur));

    return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
1132
1133
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1134
ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1135
1136
1137
1138
1139
1140
1141
1142
1143
    const uint32_t n_tokens = ubatch.n_tokens;

    ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);

    ggml_set_input(k_idxs);

    return k_idxs;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1144
ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
    const uint32_t n_tokens = ubatch.n_tokens;

    ggml_tensor * v_idxs;

    if (!v_trans) {
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
    } else {
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
    }

    ggml_set_input(v_idxs);

    return v_idxs;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1160
void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    const uint32_t n_tokens = ubatch->n_tokens;
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    int64_t * data = (int64_t *) dst->data;

    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        const int64_t offs = sinfo.strm[s]*get_size();

        for (uint32_t i = 0; i < sinfo.size(); ++i) {
            data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1176
void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    const uint32_t n_tokens = ubatch->n_tokens;
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    int64_t * data = (int64_t *) dst->data;

    if (!v_trans) {
        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            const int64_t offs = sinfo.strm[s]*get_size();

            for (uint32_t i = 0; i < sinfo.size(); ++i) {
                data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
            }
        }
    } else {
        // note: the V cache is transposed when not using flash attention
        const int64_t kv_size = get_size();

        const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();

        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;

            for (uint32_t i = 0; i < sinfo.size(); ++i) {
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
                }
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1209
void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));

    int32_t * data = (int32_t *) dst->data;

    for (uint32_t s = 0; s < n_stream; ++s) {
        const auto & cells = v_cells[s];

        for (uint32_t i = 0; i < cells.size(); ++i) {
            data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1223
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
    const uint32_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    float * data = (float *) dst->data;

    const int64_t n_kv     = dst->ne[0];
    const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch

    GGML_ASSERT(n_tokens%n_stream == 0);

    // n_tps == n_tokens_per_stream
    const int64_t n_tps     = n_tokens/n_stream;
    const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);

    std::fill(data, data + ggml_nelements(dst), -INFINITY);

    // Use only the previous KV cells of the correct sequence for each token of the ubatch.
    // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
    // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
    //   Causal mask:
    //      xxx-------
    //      xxxx------
    //      xxxxx-----
    //   Non-causal mask:
    //      xxxxx-----
    //      xxxxx-----
    //      xxxxx-----
    // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
    // TODO: optimize this section
    for (uint32_t h = 0; h < 1; ++h) {
        for (uint32_t s = 0; s < n_stream; ++s) {
            for (uint32_t ii = 0; ii < n_tps; ++ii) {
                const uint32_t i = s*n_tps + ii;

                const llama_seq_id seq_id = ubatch->seq_id[i][0];

                const auto & cells = v_cells[seq_to_stream[seq_id]];

                const llama_pos p1 = ubatch->pos[i];

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1264
1265
1266
1267
1268
                // for M-RoPE
                const bool is_2d = ubatch->is_pos_2d();
                const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
                const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens]   : 0;

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
                const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);

                for (uint32_t j = 0; j < n_kv; ++j) {
                    if (cells.is_empty(j)) {
                        continue;
                    }

                    // mask the token if not the same sequence
                    if (!cells.seq_has(j, seq_id)) {
                        continue;
                    }

                    const llama_pos p0 = cells.pos_get(j);

                    // mask future tokens
                    if (causal_attn && p0 > p1) {
                        continue;
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1288
1289
1290
1291
1292
1293
1294
1295
                    // M-RoPE causal mask
                    if (causal_attn && is_2d && p0 == p1) {
                        const auto & p0_ext = cells.ext_get(j);
                        if (p0_ext.is_2d_gt(p1_x, p1_y)) {
                            continue;
                        }
                    }

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
                    // apply SWA if any
                    if (is_masked_swa(p0, p1)) {
                        continue;
                    }

                    data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
                }
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1308
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
    const auto & cells = v_cells[0];

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    int32_t * data = (int32_t *) dst->data;

    const int32_t n_kv = dst->ne[0];

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_kv; ++j) {
                // the position when the cells is empty is irrelevant - it will be masked out later in the attention
                const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);

                data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1333
size_t llama_kv_cache::total_size() const {
1334
1335
    size_t size = 0;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1336
    for (const auto & [_, buf] : ctxs_bufs) {
1337
1338
1339
1340
1341
1342
        size += ggml_backend_buffer_get_size(buf.get());
    }

    return size;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1343
size_t llama_kv_cache::size_k_bytes() const {
1344
1345
1346
1347
1348
1349
1350
1351
1352
    size_t size_k_bytes = 0;

    for (const auto & layer : layers) {
        size_k_bytes += ggml_nbytes(layer.k);
    }

    return size_k_bytes;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1353
size_t llama_kv_cache::size_v_bytes() const {
1354
1355
1356
1357
1358
1359
1360
1361
1362
    size_t size_v_bytes = 0;

    for (const auto & layer : layers) {
        size_v_bytes += ggml_nbytes(layer.v);
    }

    return size_v_bytes;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1363
ggml_tensor * llama_kv_cache::build_rope_shift(
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        const llama_cparams & cparams,
               ggml_context * ctx,
                ggml_tensor * cur,
                ggml_tensor * shift,
                ggml_tensor * factors,
                      float   freq_base,
                      float   freq_scale) const {
    const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;

    const auto & yarn_ext_factor = cparams.yarn_ext_factor;
    const auto & yarn_beta_fast  = cparams.yarn_beta_fast;
    const auto & yarn_beta_slow  = cparams.yarn_beta_slow;

    const auto & n_rot     = hparams.n_rot;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1378
    const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
                                // @ngxson : this is a workaround
                                // for M-RoPE, we want to rotate the whole vector when doing KV shift
                                // a normal RoPE should work, we just need to use the correct ordering
                                // ref: https://github.com/ggml-org/llama.cpp/pull/13870
                                ? LLAMA_ROPE_TYPE_NEOX
                                : hparams.rope_type;

    // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
    // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
    const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
                                    ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
                                    : cparams.yarn_attn_factor;

    ggml_tensor * tmp;

    if (ggml_is_quantized(cur->type)) {
        // dequantize to f32 -> RoPE -> quantize back
        tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);

        tmp = ggml_rope_ext(ctx, tmp,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);

        tmp = ggml_cpy(ctx, tmp, cur);
    } else {
        // we rotate only the first n_rot dimensions
        tmp = ggml_rope_ext_inplace(ctx, cur,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
    }

    return tmp;
}

class llm_graph_input_k_shift : public llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1415
    llm_graph_input_k_shift(const llama_kv_cache * kv_self) : kv_self(kv_self) {}
1416
1417
1418
1419
1420
1421
    virtual ~llm_graph_input_k_shift() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * k_shift; // I32 [kv_size*n_stream]

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1422
    const llama_kv_cache * kv_self;
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
};

void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (k_shift) {
        kv_self->set_input_k_shift(k_shift);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1433
ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    auto * ctx = res->get_ctx();
    auto * gf  = res->get_gf();

    const auto & n_embd_head_k = hparams.n_embd_head_k;
  //const auto & n_embd_head_v = hparams.n_embd_head_v;

    auto inp = std::make_unique<llm_graph_input_k_shift>(this);

    inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
    ggml_set_input(inp->k_shift);

    const auto & cparams = lctx->get_cparams();

    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const int64_t n_head_kv    = hparams.n_head_kv(il);
        const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);

        ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);

        ggml_tensor * k =
            ggml_view_3d(ctx, layer.k,
                n_embd_head_k, n_head_kv, get_size()*n_stream,
                ggml_row_size(layer.k->type, n_embd_head_k),
                ggml_row_size(layer.k->type, n_embd_k_gqa),
                0);

        ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);

        ggml_build_forward_expand(gf, cur);
    }

    res->add_input(std::move(inp));

    return gf;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1475
1476
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
    return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
1477
1478
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1479
1480
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
    GGML_UNUSED(flags);
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

    io.write(&n_stream, sizeof(n_stream));

    for (uint32_t s = 0; s < n_stream; ++s) {
        cell_ranges_t cr { s, {} };

        uint32_t cell_count = 0;

        const auto & cells = v_cells[s];

        // Count the number of cells with the specified seq_id
        // Find all the ranges of cells with this seq id (or all, when -1)
        uint32_t cell_range_begin = cells.size();

        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
                ++cell_count;
                if (cell_range_begin == cells.size()) {
                    cell_range_begin = i;
                }
            } else {
                if (cell_range_begin != cells.size()) {
                    cr.data.emplace_back(cell_range_begin, i);
                    cell_range_begin = cells.size();
                }
            }
        }

        if (cell_range_begin != cells.size()) {
            cr.data.emplace_back(cell_range_begin, cells.size());
        }

        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
        uint32_t cell_count_check = 0;
        for (const auto & range : cr.data) {
            cell_count_check += range.second - range.first;
        }
        GGML_ASSERT(cell_count == cell_count_check);

        io.write(&cell_count, sizeof(cell_count));

        // skip empty streams
        if (cell_count == 0) {
            continue;
        }

        state_write_meta(io, cr, seq_id);
        state_write_data(io, cr);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1532
1533
1534
void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
    GGML_UNUSED(flags);

1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));

    uint32_t n_stream_cur;
    io.read_to(&n_stream_cur, sizeof(n_stream_cur));
    if (n_stream_cur != n_stream) {
        throw std::runtime_error("n_stream mismatch");
    }

    for (uint32_t s = 0; s < n_stream; ++s) {
        uint32_t cell_count;
        io.read_to(&cell_count, sizeof(cell_count));

        if (cell_count == 0) {
            continue;
        }

        const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];

        bool res = true;
        res = res && state_read_meta(io, strm, cell_count, seq_id);
        res = res && state_read_data(io, strm, cell_count);

        if (!res) {
            if (seq_id == -1) {
                clear(true);
            } else {
                seq_rm(seq_id, -1, -1);
            }
            throw std::runtime_error("failed to restore kv cache");
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1568
void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    const auto & cells = v_cells[cr.strm];

    for (const auto & range : cr.data) {
        for (uint32_t i = range.first; i < range.second; ++i) {
            std::vector<llama_seq_id> seq_ids;

            for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
                if (cur == seq_id || seq_id == -1) {
                    if (cells.seq_has(i, cur)) {
                        seq_ids.push_back(cur);
                    }
                }
            }

            const llama_pos pos     = cells.pos_get(i);
            const uint32_t n_seq_id = seq_ids.size();

            io.write(&pos,      sizeof(pos));
            io.write(&n_seq_id, sizeof(n_seq_id));

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1589
1590
1591
            // TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it
            //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350

1592
1593
1594
1595
1596
1597
1598
            for (const auto & seq_id : seq_ids) {
                io.write(&seq_id, sizeof(seq_id));
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1599
void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
    const auto & cells = v_cells[cr.strm];

    const uint32_t v_trans = this->v_trans ? 1 : 0;
    const uint32_t n_layer = layers.size();

    io.write(&v_trans, sizeof(v_trans));
    io.write(&n_layer, sizeof(n_layer));

    std::vector<uint8_t> tmp_buf;

    // Iterate and write all the keys first, each row is a cell
    // Get whole range at a time
    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        auto * k = layer.k_stream[cr.strm];

        // Write key type
        const int32_t k_type_i = (int32_t) k->type;
        io.write(&k_type_i, sizeof(k_type_i));

        // Write row size of key
        const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
        io.write(&k_size_row, sizeof(k_size_row));

        // Read each range of cells of k_size length each into tmp_buf and write out
        for (const auto & range : cr.data) {
            const size_t range_size = range.second - range.first;
            const size_t buf_size = range_size * k_size_row;
            io.write_tensor(k, range.first * k_size_row, buf_size);
        }
    }

    if (!v_trans) {
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[cr.strm];

            // Write value type
            const int32_t v_type_i = (int32_t) v->type;
            io.write(&v_type_i, sizeof(v_type_i));

            // Write row size of value
            const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
            io.write(&v_size_row, sizeof(v_size_row));

            // Read each range of cells of v_size length each into tmp_buf and write out
            for (const auto & range : cr.data) {
                const size_t range_size = range.second - range.first;
                const size_t buf_size = range_size * v_size_row;
                io.write_tensor(v, range.first * v_size_row, buf_size);
            }
        }
    } else {
        // When v is transposed, we also need the element size and get the element ranges from each row
        const uint32_t kv_size = cells.size();

        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[cr.strm];

            // Write value type
            const int32_t v_type_i = (int32_t) v->type;
            io.write(&v_type_i, sizeof(v_type_i));

            // Write element size
            const uint32_t v_size_el = ggml_type_size(v->type);
            io.write(&v_size_el, sizeof(v_size_el));

            // Write GQA embedding size
            io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));

            // For each row, we get the element values of each cell
            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                // Read each range of cells of v_size_el length each into tmp_buf and write out
                for (const auto & range : cr.data) {
                    const size_t range_size = range.second - range.first;
                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
                    const size_t buf_size = range_size * v_size_el;
                    io.write_tensor(v, src_offset, buf_size);
                }
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1694
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
    auto & cells = v_cells[strm];
    auto & head  = v_heads[strm];

    if (dest_seq_id != -1) {
        // single sequence
        seq_rm(dest_seq_id, -1, -1);

        llama_batch_allocr balloc(hparams.n_pos_per_embd());

        llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);

        ubatch.seq_id_unq[0] = dest_seq_id;

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            if (n_seq_id != 1) {
                LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
                return false;
            }

            // read the sequence id, but directly discard it - we will use dest_seq_id instead
            {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));
            }

            ubatch.pos[i]      = pos;
            ubatch.n_seq_id[i] = n_seq_id;
            ubatch.seq_id[i]   = &dest_seq_id;
        }

        const auto sinfo = find_slot(ubatch, true);
        if (sinfo.empty()) {
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
            return false;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1737
1738
        // TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet
        //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        apply_ubatch(sinfo, ubatch);

        const auto head_cur = sinfo.head();

        // keep the head at the old position because we will read the KV data into it in state_read_data()
        head = head_cur;

        LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);

        // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
        // Assume that this is one contiguous block of cells
        GGML_ASSERT(head_cur + cell_count <= cells.size());
        GGML_ASSERT(cells.pos_get(head_cur)                  == ubatch.pos[0]);
        GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
        GGML_ASSERT(cells.seq_has(head_cur,                  dest_seq_id));
        GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
    } else {
        // whole KV cache restore

        if (cell_count > cells.size()) {
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
            return false;
        }

        clear(true);

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t  n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            cells.pos_set(i, pos);

            for (uint32_t j = 0; j < n_seq_id; ++j) {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));

                if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
                    LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
                    return false;
                }

                cells.seq_add(i, seq_id);
            }
        }

        head = 0;
    }

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1793
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
    auto & cells = v_cells[strm];
    auto & head  = v_heads[strm];

    uint32_t v_trans;
    uint32_t n_layer;

    io.read_to(&v_trans, sizeof(v_trans));
    io.read_to(&n_layer, sizeof(n_layer));

    if (n_layer != layers.size()) {
        LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
        return false;
    }

    if (cell_count > cells.size()) {
        LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
        return false;
    }

    if (this->v_trans != (bool) v_trans) {
        LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
        return false;
    }

    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        auto * k = layer.k_stream[strm];

        // Read type of key
        int32_t k_type_i_ref;
        io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
        const int32_t k_type_i = (int32_t) k->type;
        if (k_type_i != k_type_i_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
            return false;
        }

        // Read row size of key
        uint64_t k_size_row_ref;
        io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
        const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
        if (k_size_row != k_size_row_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
            return false;
        }

        if (cell_count) {
            // Read and set the keys for the whole cell range
            ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
        }
    }

    if (!this->v_trans) {
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[strm];

            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t) v->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read row size of value
            uint64_t v_size_row_ref;
            io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
            const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
            if (v_size_row != v_size_row_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
                return false;
            }

            if (cell_count) {
                // Read and set the values for the whole cell range
                ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
            }
        }
    } else {
        // For each layer, read the values for each cell (transposed)
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[strm];

            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t) v->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read element size of value
            uint32_t v_size_el_ref;
            io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
            const size_t v_size_el = ggml_type_size(v->type);
            if (v_size_el != v_size_el_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
                return false;
            }

            // Read GQA embedding size
            uint32_t n_embd_v_gqa_ref;
            io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
            if (n_embd_v_gqa != n_embd_v_gqa_ref) {
                LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
                return false;
            }

            if (cell_count) {
                // For each row in the transposed matrix, read the values for the whole cell range
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    const size_t dst_offset = (head + j * cells.size()) * v_size_el;
                    ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
                }
            }
        }
    }

    return true;
}

//
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1930
// llama_kv_cache_context
1931
1932
//

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1933
llama_kv_cache_context::llama_kv_cache_context(llama_memory_status status) : status(status) {}
1934

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1935
1936
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
    n_kv = kv->get_size();

    const uint32_t n_stream = kv->get_n_stream();

    // create a dummy slot info - the actual data is irrelevant. we just need to build the graph
    sinfos.resize(1);
    sinfos[0].s0 = 0;
    sinfos[0].s1 = n_stream - 1;
    sinfos[0].idxs.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        sinfos[0].strm.push_back(s);
        sinfos[0].idxs[s].resize(1, 0);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1952
1953
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv,
1954
1955
        llama_context * lctx,
        bool do_shift,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1956
1957
        stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
    if (!do_shift && this->sc_info.empty()) {
1958
1959
1960
1961
        status = LLAMA_MEMORY_STATUS_NO_UPDATE;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1962
1963
1964
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv,
        llama_kv_cache::slot_info_vec_t sinfos,
1965
1966
1967
        std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1968
llama_kv_cache_context::~llama_kv_cache_context() = default;
1969

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1970
bool llama_kv_cache_context::next() {
1971
1972
1973
1974
1975
1976
1977
1978
1979
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    if (++i_cur >= ubatches.size()) {
        return false;
    }

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1980
bool llama_kv_cache_context::apply() {
1981
1982
1983
1984
    assert(!llama_memory_status_is_fail(status));

    // no ubatches -> this is a KV cache update
    if (ubatches.empty()) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1985
        kv->update(lctx, do_shift, sc_info);
1986
1987
1988
1989
1990

        return true;
    }

    kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1991
    n_kv = kv->get_n_kv(sinfos[i_cur]);
1992
1993
1994
1995

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1996
llama_memory_status llama_kv_cache_context::get_status() const {
1997
1998
1999
    return status;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2000
const llama_ubatch & llama_kv_cache_context::get_ubatch() const {
2001
2002
2003
2004
2005
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return ubatches[i_cur];
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2006
uint32_t llama_kv_cache_context::get_n_kv() const {
2007
2008
2009
    return n_kv;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2010
ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const {
2011
2012
2013
    return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2014
ggml_tensor * llama_kv_cache_context::get_v(ggml_context * ctx, int32_t il) const {
2015
2016
2017
    return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2018
ggml_tensor * llama_kv_cache_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
2019
2020
2021
    return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2022
ggml_tensor * llama_kv_cache_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
2023
2024
2025
    return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2026
ggml_tensor * llama_kv_cache_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2027
2028
2029
    return kv->build_input_k_idxs(ctx, ubatch);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2030
ggml_tensor * llama_kv_cache_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2031
2032
2033
    return kv->build_input_v_idxs(ctx, ubatch);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2034
void llama_kv_cache_context::set_input_k_shift(ggml_tensor * dst) const {
2035
2036
2037
    kv->set_input_k_shift(dst);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2038
void llama_kv_cache_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2039
2040
2041
    kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2042
void llama_kv_cache_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2043
2044
2045
    kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2046
void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
2047
2048
2049
    kv->set_input_kq_mask(dst, ubatch, causal_attn);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2050
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2051
2052
    kv->set_input_pos_bucket(dst, ubatch);
}