clip.cpp 160 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
#include "ggml-cpu.h"
10
11
#include "ggml-alloc.h"
#include "ggml-backend.h"
12
#include "gguf.h"
13
14
15
16
17
18
19
20
21
22
23
24

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
25
#include <unordered_set>
26
27
28
29
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
30
#include <array>
31
#include <numeric>
32
#include <functional>
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

47
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
48

49
50
51
52
53
54
55
56
57
58
59
enum ffn_op_type {
    FFN_GELU,
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

60
//#define CLIP_DEBUG_FUNCTIONS
61
62
63
64
65

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
66
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
85
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

175
176
177
178
179
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

180
181
182
struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
183
184
    int32_t n_embd;
    int32_t n_ff;
185
186
187
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;
188
    int32_t proj_scale_factor = 0; // idefics3
189

190
191
192
193
194
195
    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;

    ffn_op_type ffn_op = FFN_GELU;

196
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
197

198
199
    float eps = 1e-6;
    float rope_theta = 0.0;
200

201
    std::vector<int32_t> image_grid_pinpoints;
202
    int32_t image_crop_resolution;
203
    std::unordered_set<int32_t> vision_feature_layer;
204
205
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
206
    int32_t spatial_merge_size = 0;
207
208
209
210
};

struct clip_layer {
    // attention
211
212
213
214
215
216
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
217

218
219
    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;
220

221
222
    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;
223

224
225
226
    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;
227

228
229
230
231
232
233
    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;
234
235

    // layernorm 2
236
237
238
239
240
241
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
242
243
244
245
246
247
};

struct clip_vision_model {
    struct clip_hparams hparams;

    // embeddings
248
249
250
251
252
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
253

254
255
    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;
256
257
258

    std::vector<clip_layer> layers;

259
260
    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;
261

262
    ggml_tensor * projection;
263
264

    // LLaVA projection
265
266
267
268
269
    ggml_tensor * mm_input_norm_w = nullptr;
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;
270

271
    ggml_tensor * image_newline = nullptr;
272
273

    // Yi type models with mlp+normalization projection
274
275
276
277
278
279
280
281
282
283
284
285
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
    ggml_tensor * mm_glm_tok_boi = nullptr;
    ggml_tensor * mm_glm_tok_eoi = nullptr;
286

287
    // MobileVLM projection
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
312
313

    // MobileVLM_V2 projection
314
315
316
317
318
319
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;
320
321

    // MINICPMV projection
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;
340
341

    // gemma3
342
343
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;
344
345

    // pixtral
346
347
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
348
349
350
351
};

struct clip_ctx {
    bool has_llava_projector = false;
352
    int minicpmv_version = 0;
353
354
355
356
357
358
359

    struct clip_vision_model vision_model;
    projector_type proj_type = PROJECTOR_TYPE_MLP;

    float image_mean[3];
    float image_std[3];

360
361
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
362
363
364

    std::vector<uint8_t> buf_compute_meta;

365
366
367
368
369
370
371
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

    ggml_backend_t backend;
    ggml_backend_t backend_cpu;
    ggml_backend_buffer_ptr buf;

372
    int max_nodes = 8192;
373
    ggml_backend_sched_ptr sched;
374

375
    clip_image_size load_image_size;
376

377
378
    clip_ctx(clip_context_params & ctx_params) {
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
379
380
381
382
383
384
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
        backend = ctx_params.use_gpu
                    ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
                    : nullptr;
385
386
387
388
389
390
391
392
393
394
395
396
397
398

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
399
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
400
401
402
403
404
405
406
407
408
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
409
410
};

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
struct clip_graph {
    clip_ctx * ctx;
    const clip_vision_model & model;
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
            model(ctx->vision_model),
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
        gf = ggml_new_graph(ctx0);
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);

        if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
            const int kernel_size = hparams.proj_scale_factor;

            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

        } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3) {
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578

            const int scale_factor = model.hparams.proj_scale_factor;
            const int n_embd = cur->ne[0];
            const int seq    = cur->ne[1];
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = std::sqrt(seq);
            const int width  = std::sqrt(seq);
            GGML_ASSERT(scale_factor != 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                seq / (scale_factor * scale_factor),
                bsz);

            cur = ggml_mul_mat(ctx0, model.projection, cur);
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
517
518
        }

519
520
        // build the graph
        ggml_build_forward_expand(gf, cur);
521

522
523
        return gf;
    }
524

525
526
    ggml_cgraph * build_pixtral() {
        const int n_merge = hparams.spatial_merge_size;
527

528
529
530
531
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
532

533
534
535
        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
536

537
538
539
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta);
        };
540

541
542
543
544
545
546
547
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);
548

549
550
551
552
        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
            GGML_ASSERT(hparams.spatial_merge_size > 0);
553

554
            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
555

556
557
558
559
            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);
560

561
562
563
564
            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
565

566
567
568
            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
569
570
        }

571
572
573
574
575
576
        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }
577

578
579
580
581
582
583
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }
584

585
586
587
588
589
590
        // arrangement of the [IMG_BREAK] token
        {
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
591

592
593
594
595
596
            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
597

598
599
600
601
602
603
604
605
606
            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }
607

608
609
        // build the graph
        ggml_build_forward_expand(gf, cur);
610

611
        return gf;
612
613
    }

614
615
616
617
    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);
618

619
620
621
622
623
        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
624

625
626
627
        norm_type norm_t = ctx->proj_type == PROJECTOR_TYPE_QWEN25VL
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl
628

629
        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
630

631
632
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
633

634
635
        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
636

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

            inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3));  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
            inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
            inp = ggml_reshape_3d(
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
690

691
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
692

693
694
695
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
721

722
723
                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);
724

725
                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
726

727
728
729
730
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }
731

732
733
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
734

735
            inpL = cur; // inpL = residual, cur = hidden_states
736

737
            cb(cur, "ffn_inp", il);
738

739
740
741
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
742

743
744
745
746
747
748
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
749

750
            cb(cur, "ffn_out", il);
751

752
753
754
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
755

756
            inpL = cur;
757
758
        }

759
760
761
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
762
763
        }

764
765
766
        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
767

768
769
        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
770

771
772
773
774
        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
775
776
777
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

778
779
780
781
        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);
782

783
784
785
786
787
788
            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }
789

790
791
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
792

793
        return gf;
794
795
    }

796
797
    ggml_cgraph * build_minicpmv() {
        const int batch_size = 1;
798

799
800
        GGML_ASSERT(model.class_embedding == nullptr);
        const int n_pos = n_patches;
801

802
803
804
805
806
        // position embeddings for the projector (not for ViT)
        int n_output_dim = clip_n_mmproj_embd(ctx);
        ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
807

808
809
810
811
        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
812

813
814
815
816
817
818
819
820
821
        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);
822

823
        // resampler projector (it is just another transformer)
824

825
826
        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
827

828
829
830
        // norm
        q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
831

832
833
        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
834

835
836
837
838
839
840
841
842
843
844
845
846
847
        // attention
        {
            int n_embd = clip_n_mmproj_embd(ctx);
            const int d_head = 128;
            int n_head = n_embd/d_head;
            int num_query = 96;
            if (ctx->minicpmv_version == 2) {
                num_query = 96;
            } else if (ctx->minicpmv_version == 3) {
                num_query = 64;
            } else if (ctx->minicpmv_version == 4) {
                num_query = 64;
            }
848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
                Q, K, V, nullptr, kq_scale, -1);
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
878

879
880
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
881

882
        return gf;
883
884
    }

885
886
887
    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
888

889
890
        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();
891

892
893
        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
894

895
896
897
898
899
        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
900

901
902
903
904
905
906
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);
907

908
909
910
911
        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);
912

913
        // pixel shuffle
914
        {
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
            cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }
945

946
947
        // build the graph
        ggml_build_forward_expand(gf, cur);
948

949
950
        return gf;
    }
951

952
953
954
955
956
    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
957

958
        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
959

960
961
962
963
964
965
        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;
966

967
968
969
            if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
                il_last += 1;
            }
970

971
972
973
974
975
976
            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
977
            }
978
979
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }
980

981
        ggml_tensor * inp = build_inp();
982

983
984
985
        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
986
987
        }

988
989
990
        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
991

992
        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
993

994
        ggml_tensor * inpL = inp;
995

996
997
998
999
1000
        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }
1001

1002
1003
        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;
1004

1005
1006
1007
1008
        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
1009

1010
1011
1012
1013
1014
            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }
1015

1016
1017
1018
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);
1019

1020
1021
1022
1023
1024
1025
            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1026

1027
1028
1029
1030
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1031

1032
1033
1034
1035
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1036

1037
1038
1039
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1040

1041
1042
1043
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1044

1045
1046
1047
1048
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }
1049

1050
1051
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1052

1053
            inpL = cur; // inpL = residual, cur = hidden_states
1054

1055
            cb(cur, "ffn_inp", il);
1056

1057
1058
1059
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);
1060

1061
1062
1063
1064
1065
1066
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
1067

1068
            cb(cur, "ffn_out", il);
1069

1070
1071
1072
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1073

1074
            inpL = cur;
1075
        }
1076

1077
1078
1079
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
1080
        }
1081

1082
        ggml_tensor * embeddings = inpL;
1083

1084
1085
1086
1087
1088
1089
        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }
1090

1091
1092
1093
1094
1095
1096
1097
1098
            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }
1099

1100
1101
1102
        // llava projector (also used by granite)
        if (ctx->has_llava_projector) {
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
1103

1104
1105
1106
            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);
1107

1108
1109
1110
            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);
1111

1112
            // print_tensor_info(embeddings, "embeddings");
1113

1114
1115
1116
1117
            // llava projector
            if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
1118

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
            else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
            else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
                    mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
                    mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }
1207

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
            else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
                // mlp_2 ne = [576, 2048, 1, 1]
                mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        // glm projector
        else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
            embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
                embeddings = ggml_silu_inplace(ctx0, embeddings);
                embeddings = ggml_mul(ctx0, embeddings,x);
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
                embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
            }
        }
1315

1316
1317
1318
        else {
            GGML_ABORT("llava: unknown projector type");
        }
1319

1320
1321
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1322

1323
        return gf;
1324
1325
    }

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
private:
    //
    // utility functions
    //

    void cb(ggml_tensor * cur, const char * name, int il) const {
        // TODO: implement this
        GGML_UNUSED(cur);
        GGML_UNUSED(name);
        GGML_UNUSED(il);
    }

    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1377

1378
1379
1380
1381
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1382

1383
1384
1385
1386
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1387

1388
1389
1390
1391
                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }
1392

1393
1394
1395
1396
                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }
1397

1398
1399
1400
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1401

1402
1403
1404
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1405

1406
1407
1408
1409
1410
1411
                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }
1412

1413
1414
1415
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
1416
            }
1417

1418
1419
1420
            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
1421
            }
1422

1423
1424
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1425

1426
            inpL = cur; // inpL = residual, cur = hidden_states
1427

1428
            cb(cur, "ffn_inp", il);
1429

1430
1431
1432
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
1433

1434
1435
1436
1437
1438
1439
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);
1440

1441
            cb(cur, "ffn_out", il);
1442

1443
1444
1445
1446
            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }
1447

1448
1449
1450
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1451

1452
            inpL = cur;
1453
1454
        }

1455
1456
1457
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
1458
        }
1459
1460
        return inpL;
    }
1461

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }
1475

1476
1477
1478
1479
1480
    ggml_tensor * build_inp_raw() {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, 3);
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
1481
1482
    }

1483
1484
1485
1486
1487
1488
1489
    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {
1490

1491
1492
1493
        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);
1494

1495
1496
1497
        if (mw || mb) {
            cb(cur, "norm", il);
        }
1498

1499
1500
1501
1502
1503
        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
1504
1505
        }

1506
1507
1508
        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }
1509

1510
1511
        return cur;
    }
1512

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {
1523

1524
1525
        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);
1526

1527
1528
1529
1530
        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }
1531

1532
1533
1534
1535
1536
1537
1538
        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
1539
            }
1540
1541
        } else {
            cur = tmp;
1542
1543
        }

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
        switch (type_op) {
            case FFN_SILU:
                {
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
                {
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
            case FFN_GELU_QUICK:
                {
                    cur = ggml_gelu_quick(ctx0, cur);
                    cb(cur, "ffn_relu", il);
                } break;
1560
        }
1561
1562
1563
1564
1565

        // we only support parallel ffn for now
        if (gate) {
            cur = ggml_mul(ctx0, cur, tmp);
            cb(cur, "ffn_gate_par", il);
1566
        }
1567
1568
1569

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
1570
        }
1571
1572
1573

        if (down_b) {
            cb(cur, "ffn_down", il);
1574
        }
1575
1576
1577

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
1578
        }
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
        v = ggml_cont(ctx0, v);
        //cb(k, "v", il);

        ggml_tensor * cur;

        // TODO @ngxson : support flash attention
        {
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];
            // const auto n_kv     = k->ne[1]; // for flash attention

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
1625
1626
        }

1627
        cb(cur, "kqv_out", il);
1628

1629
1630
        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
1631
        }
1632

1633
1634
        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
1635
        }
1636
1637

        return cur;
1638
    }
1639

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
        ggml_tensor * pos_h,
        ggml_tensor * pos_w,
        const float freq_base
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];
1653

1654
1655
1656
1657
1658
1659
1660
1661
1662
        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
        const float freq_scale_odd = std::pow(freq_base, (float)-2/n_dim);
1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
                pos_h,      // positions
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
            second = ggml_rope_ext(
                ctx0,
                second,
                pos_w,      // positions
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
1706
    }
1707

1708
};
1709

1710
1711
1712
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);
1713

1714
    ggml_cgraph * res;
1715

1716
1717
1718
1719
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
            {
1720
                res = graph.build_siglip();
1721
1722
1723
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
1724
                res = graph.build_pixtral();
1725
            } break;
1726
        case PROJECTOR_TYPE_QWEN2VL:
1727
1728
        case PROJECTOR_TYPE_QWEN25VL:
            {
1729
1730
1731
1732
1733
1734
1735
1736
1737
                res = graph.build_qwen2vl();
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
1738
1739
1740
            } break;
        default:
            {
1741
                res = graph.build_llava();
1742
            } break;
1743
    }
1744
    return res;
1745
}
1746

1747
1748
1749
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
1750

1751
1752
    clip_ctx & ctx_clip;
    std::string fname;
1753

1754
    size_t model_size = 0; // in bytes
1755
1756
1757
1758
1759
1760
1761
1762
1763

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
    clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
1764

1765
1766
1767
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
1768
1769
        }

1770
        ctx_meta.reset(meta);
1771

1772
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
1773

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
1787
1788
        }

1789
1790
1791
1792
1793
1794
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
1795
                ggml_tensor * cur = ggml_get_tensor(meta, name);
1796
1797
1798
1799
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
1800
1801
1802
1803
            }
        }
    }

1804
    void load_hparams() {
1805
        auto & hparams = ctx_clip.vision_model.hparams;
1806
        std::string log_ffn_op; // for logging
1807

1808
        // projector type
1809
        std::string proj_type;
1810
1811
1812
1813
1814
1815
1816
        {
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
                ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
            }
            if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
1817
1818
1819
            }
        }

1820
1821
        // other hparams
        {
1822
            get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); // legacy
1823

1824
            get_u32(KEY_N_EMBD,         hparams.n_embd);
1825
            get_u32(KEY_N_HEAD,         hparams.n_head);
1826
            get_u32(KEY_N_FF,           hparams.n_ff);
1827
1828
1829
1830
1831
1832
            get_u32(KEY_N_BLOCK,        hparams.n_layer);
            get_u32(KEY_PROJ_DIM,       hparams.projection_dim);
            get_f32(KEY_LAYER_NORM_EPS, hparams.eps);
            get_u32(KEY_IMAGE_SIZE,     hparams.image_size);
            get_u32(KEY_PATCH_SIZE,     hparams.patch_size);
            get_u32(KEY_IMAGE_CROP_RESOLUTION,    hparams.image_crop_resolution, false);
1833
            get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
1834

1835
1836
1837
            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

1838
1839
1840
1841
1842
            ctx_clip.has_llava_projector = ctx_clip.proj_type == PROJECTOR_TYPE_MLP
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_MLP_NORM
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_LDP
                                        || ctx_clip.proj_type == PROJECTOR_TYPE_LDPV2;

1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

1863
1864
1865
1866
1867
1868
1869
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
            {
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
                    ctx_clip.image_mean[i] = mean_data[i];
                    ctx_clip.image_std[i]  = std_data[i];
                }
1882
1883
            }

1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904

            // model-specific params
            switch (ctx_clip.proj_type) {
                case PROJECTOR_TYPE_MINICPMV:
                    {
                        if (ctx_clip.minicpmv_version == 0) {
                            ctx_clip.minicpmv_version = 2; // default to 2 if not set
                        }
                    } break;
                case PROJECTOR_TYPE_IDEFICS3:
1905
                case PROJECTOR_TYPE_INTERNVL:
1906
1907
1908
1909
1910
1911
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
                    {
                        hparams.rope_theta = 10000.0f;
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
                        hparams.warmup_image_size = hparams.patch_size * 8;
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
                    } break;
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
                        hparams.proj_scale_factor = 4;
                        // test model (tinygemma3) has a different value, we optionally read it
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
                    {
                        // max image size = sqrt(max_pixels) = 3584
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
1931
1932
1933
                    } break;
                case PROJECTOR_TYPE_QWEN25VL:
                    {
1934
1935
1936
1937
1938
1939
                        // max image size = sqrt(max_pixels)
                        // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
1940
1941
1942
1943
1944
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
                    } break;
                default:
                    break;
            }
1945

1946
            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
1947
1948
1949
1950
1951
1952
1953
1954
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
            LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
            LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
            LOG_INF("\n");
1955
            LOG_INF("%s: has_llava_proj:     %d\n", __func__, ctx_clip.has_llava_projector);
1956
            LOG_INF("%s: minicpmv_version:   %d\n", __func__, ctx_clip.minicpmv_version);
1957
1958
            LOG_INF("%s: proj_scale_factor:  %d\n", __func__, hparams.proj_scale_factor);
            LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
1959
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
1960
1961
1962
1963
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
1964

1965
    void load_tensors() {
1966
        auto & hparams = ctx_clip.vision_model.hparams;
1967
1968
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
1969

1970
1971
1972
1973
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
1974
1975
        }

1976
1977
1978
1979
1980
1981
1982
1983
1984
        // create data context
        struct ggml_init_params params = {
            /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
1985
1986
        }

1987
1988
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
1989
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
1990
1991
1992
1993
1994
1995
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
1996
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
1997
1998
1999
2000
2001
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
2002

2003
        auto & vision_model = ctx_clip.vision_model;
2004

2005
        vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
2006

2007
2008
        vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
        vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"),   false);
2009

2010
2011
        vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
        vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"),   false);
2012

2013
2014
2015
        vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
2016

2017
        vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
2018

2019
        // layers
2020
2021
        vision_model.layers.resize(hparams.n_layer);
        for (int il = 0; il < hparams.n_layer; ++il) {
2022
2023
2024
2025
2026
            auto & layer = vision_model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      "v", il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      "v", il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
2027
2028
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, "v", il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, "v", il, "weight"), false);
2029
2030
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        "v", il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        "v", il, "weight"), false);
2031
2032
2033
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        "v", il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        "v", il, "weight"), false); // no bias

2034
2035
2036
2037
2038
2039
            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      "v", il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      "v", il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      "v", il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        "v", il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        "v", il, "bias"), false);
2040

2041
            // ffn
2042
2043
2044
2045
2046
2047
2048
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   "v", il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   "v", il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, "v", il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, "v", il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"),   false);

2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
            if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
            }
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
        }

        switch (ctx_clip.proj_type) {
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    // missing in Yi-type llava
                    vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    // Yi-type llava
                    vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (vision_model.mm_3_w) {
                        // TODO: this is a hack to support Yi-type llava
                        ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
                    }
                    vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
                } break;
2125
            case PROJECTOR_TYPE_MINICPMV:
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
                {
                    // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
                    vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
2151
2152
2153
2154
2155
2156
2157
2158
                    vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
                    vision_model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    vision_model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
2159
                } break;
2160
2161
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
                {
                    vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
                    vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
                } break;
2173
2174
2175
2176
2177
2178
2179
            case PROJECTOR_TYPE_IDEFICS3:
                {
                    vision_model.projection = get_tensor(TN_MM_PROJECTOR);
                } break;
            case PROJECTOR_TYPE_PIXTRAL:
                {
                    vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
2180
                    vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
2181
                    vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
2182
                    vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
2183
2184
                    // [IMG_BREAK] token embedding
                    vision_model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
                    // for mistral small 3.1
                    vision_model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    vision_model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
                    vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    vision_model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    vision_model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    vision_model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    vision_model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    vision_model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
2197
                } break;
2198
2199
2200
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
2201

2202
2203
2204
        // load data
        {
            std::vector<uint8_t> read_buf;
2205
2206

#ifdef _WIN32
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
2217
#if __GLIBCXX__
2218
2219
2220
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
2221
#else // MSVC
2222
2223
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
2224
#endif
2225
            free(wbuf);
2226
#else
2227
            auto fin = std::ifstream(fname, std::ios::binary);
2228
2229
#endif
            if (!fin) {
2230
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
2231
            }
2232
2233
2234
2235
2236
2237

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
2238
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
2254
2255
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
2256
            close(fd);
2257
#else
2258
            fin.close();
2259
#endif
2260
2261
2262

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
2263
2264
    }

2265
    void alloc_compute_meta() {
2266
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
2267
2268
2269
2270

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
2271
2272
2273
        img->nx = ctx_clip.vision_model.hparams.warmup_image_size;
        img->ny = ctx_clip.vision_model.hparams.warmup_image_size;
        img->buf.resize(img->nx * img->ny * 3);
2274
2275
        batch.entries.push_back(std::move(img));

2276
        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
2277
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
2278

2279
2280
2281
2282
2283
2284
2285
2286
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
2287
            }
2288
2289
        }
    }
2290

2291
2292
2293
2294
2295
2296
2297
2298
    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
2299

2300
2301
2302
2303
2304
2305
2306
2307
    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
2308

2309
2310
2311
2312
2313
    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2314
        }
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2332
        }
2333
2334
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
2335

2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
};
2350

2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
    return clip_init(fname, clip_context_params{
        /* use_gpu */   true,
        /* verbosity */ static_cast<ggml_log_level>(verbosity),
    });
}

struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
    g_logger_state.verbosity_thold = ctx_params.verbosity;
2361
    clip_ctx * ctx_clip = nullptr;
2362
2363

    try {
2364
        ctx_clip = new clip_ctx(ctx_params);
2365
2366
2367
2368
2369
2370
2371
2372
        clip_model_loader loader(fname, *ctx_clip);
        loader.load_hparams();
        loader.load_tensors();
        loader.alloc_compute_meta();
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
        delete ctx_clip;
        return nullptr;
2373
2374
    }

2375
    return ctx_clip;
2376
2377
2378
}

void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
2379
    ctx_clip->load_image_size = *load_image_size; // copy
2380
2381
}

2382
struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
2383
    return &ctx_clip->load_image_size;
2384
2385
}

2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
2438
    }
2439
    return batch->entries[idx]->ny;
2440
}
2441
2442
2443
2444
2445

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
2446
    }
2447
    return batch->entries[idx].get();
2448
2449
}

2450
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
2451
2452
2453
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
2454
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
2455
2456
2457
2458
2459
2460
}

bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
    if (!data) {
2461
        LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
2462
2463
        return false;
    }
2464
    clip_build_img_from_pixels(data, nx, ny, img);
2465
2466
2467
2468
2469
2470
2471
2472
    stbi_image_free(data);
    return true;
}

bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
    int nx, ny, nc;
    auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
    if (!data) {
2473
        LOG_ERR("%s: failed to decode image bytes\n", __func__);
2474
2475
        return false;
    }
2476
    clip_build_img_from_pixels(data, nx, ny, img);
2477
2478
2479
2480
2481
    stbi_image_free(data);
    return true;
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
2482
2483
2484
2485
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
2486

2487
2488
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
2489
        int c = i % 3; // rgb
2490
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
2491
2492
2493
    }
}

2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
2531

2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
        float C[5];
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
2590
2591
2592
                }
            }
        }
2593
2594

        return true;
2595
2596
    }

2597
2598
2599
2600
2601
2602
    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;
2603

2604
2605
        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;
2606

2607
        int new_width, new_height;
2608

2609
2610
2611
2612
2613
2614
2615
        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }
2616

2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }
2631

2632
2633
2634
        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;
2635

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }
2646

2647
2648
2649
2650
    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);
2651

2652
2653
2654
2655
2656
2657
2658
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
2659
2660
2661
            }
        }
    }
2662

2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than max_dimension, it will be resized to max_dimension
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
        if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
            return {0, 0};
        }

        float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
                                              static_cast<float>(max_dimension) / inp_size.height));

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

2677
2678
        int aligned_width  = CLIP_ALIGN((int)target_width_f,  align_size);
        int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
2679
2680
2681
2682

        return {aligned_width, aligned_height};
    }

2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
2693
2694

/**
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
2706
 *
2707
2708
2709
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
2710
 */
2711
2712
2713
2714
2715
2716
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
2717

2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static int get_max_slices(struct clip_ctx * ctx) {
        if (clip_is_minicpmv(ctx)) {
            return 9;
        }
        return 0;
    }

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int max_slice_nums  = get_max_slices(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
        const float log_ratio = log((float)original_width / original_height);
        const float ratio = (float)original_width * original_height / (slice_size * slice_size);
        const int multiple = fmin(ceil(ratio), max_slice_nums);
        const bool has_slices = (multiple > 1);
        const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
                ctx->vision_model.hparams.image_grid_pinpoints,
                original_size);
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
                    if (x == 0) {
                        res.grid_size.width++;
2766
2767
                    }
                }
2768
                res.grid_size.height++;
2769
            }
2770
2771

            return res;
2772
2773
        }

2774
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
2775

2776
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
2777
        res.overview_size = best_size;
2778

2779
2780
2781
2782
        if (!has_slices) {
            // skip slicing logic
            res.refined_size = clip_image_size{0, 0};
            res.grid_size    = clip_image_size{0, 0};
2783

2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
        } else {
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
                    // LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
                }
            }
        }
2810

2811
2812
        return res;
    }
2813

2814
2815
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
2816

2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }
2833

2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
2844
        }
2845
2846

        return output;
2847
2848
    }

2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        int original_width = original_size.width;
        int original_height = original_size.height;
        clip_image_size best_fit;
        int max_effective_resolution = 0;
        int min_wasted_resolution = std::numeric_limits<int>::max();

        for (const auto & resolution : possible_resolutions) {
            int width  = resolution.width;
            int height = resolution.height;
            float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
            int downscaled_width  = static_cast<int>(original_width * scale);
            int downscaled_height = static_cast<int>(original_height * scale);
            int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
            int wasted_resolution = (width * height) - effective_resolution;
            // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
                max_effective_resolution = effective_resolution;
                min_wasted_resolution = wasted_resolution;
                best_fit = resolution;
2891
2892
            }
        }
2893
2894

        return best_fit;
2895
2896
    }

2897
2898
2899
2900
2901
    // used by llava 1.6 with custom list of pinpoints
    static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
        std::vector<clip_image_size> possible_resolutions;
        for (size_t i = 0; i < pinpoints.size(); i += 2) {
            possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
2902
        }
2903
        return select_best_resolution(original_size, possible_resolutions);
2904
2905
    }

2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
2948
                }
2949
                ++m;
2950
2951
            }
        }
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
2963
    }
2964
};
2965

2966
// TODO @ngxson : decprecate the load_image_size singleton pattern
2967
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
2968
2969
    const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
    return inst.grid_size.width;
2970
2971
2972
2973
}

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
2974
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
2975
2976
2977
2978
2979
2980
2981
    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
    auto & params = ctx->vision_model.hparams;
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }
2982

2983
    if (clip_is_minicpmv(ctx)) {
2984
2985
2986
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

2987
        for (size_t i = 0; i < imgs.size(); ++i) {
2988
2989
2990
2991
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
2992
        }
2993
2994
        return true;
    }
2995
    else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
2996
        clip_image_u8 resized;
2997
2998
2999
        auto patch_size = params.patch_size * 2;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
        image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
3000

3001
3002
3003
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
3004
        // res_imgs->data[0] = *res;
3005
        res_imgs->entries.push_back(std::move(img_f32));
3006
3007
        return true;
    }
3008
3009
    else if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE
            || ctx->proj_type == PROJECTOR_TYPE_GEMMA3
3010
3011
3012
            || ctx->proj_type == PROJECTOR_TYPE_IDEFICS3
            || ctx->proj_type == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
    ) {
3013
        clip_image_u8 resized_image;
3014
        int sz = params.image_size;
3015
        image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
3016
        clip_image_f32_ptr img_f32(clip_image_f32_init());
3017
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
3018
3019
        normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(img_f32));
3020
3021
        return true;
    }
3022
3023
3024
3025
3026
3027
3028
3029
3030
    else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
        clip_image_u8 resized_image;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
        image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(img_f32));
        return true;
    }
3031

3032
3033
3034
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

3035
    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
3036
3037
3038
3039
3040

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
3041
3042
3043
3044
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

3045
3046
        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};
3047

3048
3049
        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
3050

3051
3052
3053
3054
        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;
3055

3056
3057
3058
3059
    } else if (!params.image_grid_pinpoints.empty()) {
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
3060

3061
3062
3063
3064
3065
        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
            res_imgs->entries.push_back(std::move(res));
3066
3067
        }

3068
        return true;
3069

3070
    }
3071

3072
    GGML_ASSERT(false && "Unknown image preprocessing type");
3073
3074
3075
3076
3077
3078
3079
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
    return ctx->vision_model.image_newline;
}

void clip_free(clip_ctx * ctx) {
3080
3081
3082
    if (ctx == nullptr) {
        return;
    }
3083
3084
3085
    delete ctx;
}

3086
// deprecated
3087
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
3088
3089
3090
    const int32_t nx = ctx->vision_model.hparams.image_size;
    const int32_t ny = ctx->vision_model.hparams.image_size;
    return clip_embd_nbytes_by_img(ctx, nx, ny);
3091
3092
}

3093
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
3094
3095
3096
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
3097
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
3098
3099
}

3100
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
3101
3102
3103
    return ctx->vision_model.hparams.image_size;
}

3104
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
3105
3106
3107
    return ctx->vision_model.hparams.patch_size;
}

3108
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
3109
    return ctx->vision_model.hparams.n_embd;
3110
3111
3112
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
3113
    return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
3114
3115
3116
}

const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
3117
3118
3119
3120
3121
3122
3123
3124
    if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
        return &ctx->vision_model.hparams.image_grid_pinpoints.front();
    }
    return nullptr;
}

size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
    return ctx->vision_model.hparams.image_grid_pinpoints.size();
3125
3126
}

3127
// deprecated
3128
int clip_n_patches(const struct clip_ctx * ctx) {
3129
3130
3131
    clip_image_f32 img;
    img.nx = ctx->vision_model.hparams.image_size;
    img.ny = ctx->vision_model.hparams.image_size;
3132
    return clip_n_output_tokens(ctx, &img);
3133
3134
}

3135
// deprecated
3136
int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
    return clip_n_output_tokens(ctx, img);
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->vision_model.hparams;
    const int n_total = clip_n_output_tokens(ctx, img);
    if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
        return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
    const auto & params = ctx->vision_model.hparams;
    if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
        return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3158
3159
3160
3161
    const auto & params = ctx->vision_model.hparams;

    int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);

3162
3163
3164
    if (ctx->proj_type == PROJECTOR_TYPE_LDP
            || ctx->proj_type == PROJECTOR_TYPE_LDPV2
            || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
3165
        n_patches /= 4;
3166
3167
3168
        if (ctx->vision_model.mm_glm_tok_boi) {
            n_patches += 2; // for BOI and EOI token embeddings
        }
3169
    } else if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
3170
3171
3172
3173
3174
3175
        if (ctx->minicpmv_version == 2) {
            n_patches = 96;
        }
        else if (ctx->minicpmv_version == 3) {
            n_patches = 64;
        }
3176
3177
3178
        else if (ctx->minicpmv_version == 4) {
            n_patches = 64;
        }
3179
3180
3181
3182
        else {
            GGML_ABORT("Unknown minicpmv version");
        }
    } else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL) {
3183
3184
3185
3186
        int patch_size = params.patch_size * 2;
        int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
        int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
        n_patches = x_patch * y_patch;
3187
    } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
3188
3189
3190
3191
3192
3193
        int n_per_side = params.image_size / params.patch_size;
        int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
        n_patches = n_per_side_2d_pool * n_per_side_2d_pool;
    } else if (ctx->proj_type == PROJECTOR_TYPE_IDEFICS3 || ctx->proj_type == PROJECTOR_TYPE_INTERNVL) {
        // both W and H are divided by proj_scale_factor
        n_patches /= (params.proj_scale_factor * params.proj_scale_factor);
3194
    } else if (ctx->proj_type == PROJECTOR_TYPE_PIXTRAL) {
3195
3196
3197
        int n_merge = params.spatial_merge_size;
        int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
        int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
3198
        n_patches = n_patches_y*n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
    }

    return n_patches;
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
3291
3292
3293
3294
3295
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

3296
3297
3298
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

3299
3300
3301
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
3302

3303
3304
3305
3306
    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
3307
    }
3308
3309

    // build the inference graph
3310
    ggml_backend_sched_reset(ctx->sched.get());
3311
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
3312
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
3313
3314

    // set inputs
3315
    const auto & model   = ctx->vision_model;
3316
3317
    const auto & hparams = model.hparams;

3318
3319
3320
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

3321
3322
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
3323
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
3324
    const int pos_w = ctx->load_image_size.width  / patch_size;
3325
    const int pos_h = ctx->load_image_size.height / patch_size;
3326

3327
3328
3329
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
3330
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
3355
    {
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
3372

3373
3374
3375
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
3376
3377
3378
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
3379
3380
3381
3382
3383
3384
3385
3386
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
3387
3388
3389
3390
                    }
                }
            }
        }
3391
        set_input_f32("inp_raw", inp_raw);
3392
3393
    }

3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
    // set input per projector
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
3406
                }
3407
3408
3409
3410
3411
3412
3413
3414
3415
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
3416

3417
3418
3419
3420
                // inspired from resampler of Qwen-VL:
                //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
                //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
                int embed_dim = clip_n_mmproj_embd(ctx);
3421

3422
3423
                // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
                auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
3424

3425
3426
3427
3428
3429
3430
                std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
                for(int i = 0; i < pos_w * pos_h; ++i){
                    for(int j = 0; j < embed_dim; ++j){
                        pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
                    }
                }
3431

3432
3433
3434
3435
3436
3437
3438
                set_input_f32("pos_embed", pos_embed);
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
            {
                const int merge_ratio = 2;
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
3439
                std::vector<int> positions(n_pos * 4);
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
3454

3455
3456
3457
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
3458
            {
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
3503
3504
                        }
                    }
3505
3506
3507
3508
3509
3510
3511
3512

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
3513
3514
                }

3515
                const int mpow = merge_ratio * merge_ratio;
3516
                std::vector<int> positions(n_pos * 4);
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
3535

3536
3537
3538
3539
3540
3541
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
3542
                std::vector<int> pos_data(n_pos);
3543
                // dimension H
3544
                for (int i = 0; i < n_pos; i++) {
3545
3546
3547
3548
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
3549
                for (int i = 0; i < n_pos; i++) {
3550
3551
3552
3553
3554
3555
3556
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
3557
3558
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
3559
                positions[i] = i;
3560
            }
3561
3562
3563
3564
3565
3566
3567
3568
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
3569
3570
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
3571
3572
3573
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
3574

3575
3576
3577
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
3578
                int patch_offset = model.class_embedding ? 1 : 0;
3579
                std::vector<int32_t> patches(num_patches);
3580
                for (int i = 0; i < num_patches; i++) {
3581
                    patches[i] = i + patch_offset;
3582
                }
3583
3584
3585
3586
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
3587
        case PROJECTOR_TYPE_INTERNVL:
3588
3589
3590
3591
3592
            {
                // do nothing
            } break;
        default:
            GGML_ABORT("Unknown projector type");
3593
3594
    }

3595
3596
3597
3598
3599
3600
3601
3602
3603
    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }
3604

3605
3606
3607
3608
3609
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
3610
3611

    // the last node is the embedding tensor
3612
3613
3614
3615
3616
3617
3618
3619
3620
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
        LOG_ERR("%s: expected %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
        GGML_ABORT("Invalid number of output tokens");
    }
3621
3622
3623
3624
3625
3626
3627
3628
3629

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
    assert(itype < GGML_TYPE_COUNT);
3630
    ggml_type type = static_cast<ggml_type>(itype);
3631

3632
3633
3634
3635
    auto * ctx_clip = clip_init(fname_inp, clip_context_params{
        /* use_gpu */   false,
        /* verbosity */ GGML_LOG_LEVEL_ERROR,
    });
3636

3637
3638
    const auto & ctx_src = ctx_clip->ctx_gguf.get();
    const auto & ctx_data = ctx_clip->ctx_data.get();
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650

    auto * ctx_out = gguf_init_empty();
    gguf_set_kv(ctx_out, ctx_src);
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
    gguf_set_val_u32(ctx_out, "general.file_type", itype);

    auto fout = std::ofstream(fname_out, std::ios::binary);

    const int n_tensors = gguf_get_n_tensors(ctx_src);

    for (int i = 0; i < n_tensors; ++i) {
        const char * name = gguf_get_tensor_name(ctx_src, i);
3651
        ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
        gguf_add_tensor(ctx_out, cur);
    }

    const size_t meta_size = gguf_get_meta_size(ctx_out);
    for (size_t i = 0; i < meta_size; ++i) {
        fout.put(0);
    }

    // regexes of tensor names to be quantized
    const std::vector<std::string> k_names = {
        ".*weight",
    };

    std::vector<uint8_t> work(512);
    std::vector<float> conv_buf(512);
    size_t total_size_org = 0;
    size_t total_size_new = 0;

    for (int i = 0; i < n_tensors; ++i) {
        const std::string name = gguf_get_tensor_name(ctx_src, i);
3672
        ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685

        enum ggml_type new_type;
        void * new_data;
        size_t new_size;

        bool quantize = false;
        for (const auto & s : k_names) {
            if (std::regex_match(name, std::regex(s))) {
                quantize = true;
                break;
            }
        }

3686
3687
        // quantize only 2D tensors and bigger than block size
        quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
3688
3689
3690
3691
3692

        if (quantize) {
            new_type = type;
            if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
                new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
3693
                // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
            }
            const size_t n_elms = ggml_nelements(cur);
            float * f32_data;

            switch (cur->type) {
            case GGML_TYPE_F32:
                f32_data = (float *)cur->data;
                break;
            case GGML_TYPE_F16:
                if (conv_buf.size() < n_elms) {
                    conv_buf.resize(n_elms);
                }
                for (size_t j = 0; j < n_elms; ++j) {
                    conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
                }
                f32_data = (float *)conv_buf.data();
                break;
            default:
3712
                LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
                gguf_free(ctx_out);
                return false;
            }

            if (work.size() < n_elms * 4) {
                work.resize(n_elms * 4);
            }
            new_data = work.data();

            new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
        } else {
            new_type = cur->type;
            new_data = cur->data;
            new_size = ggml_nbytes(cur);
        }
        const size_t orig_size = ggml_nbytes(cur);
        total_size_org += orig_size;
        total_size_new += new_size;
        gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
3732
3733
        GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
        gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
3734
3735
3736
3737
3738
3739
        fout.write((const char *)new_data, new_size);
        size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
        for (size_t j = 0; j < pad; ++j) {
            fout.put(0);
        }

3740
        LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
               orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
    }

    // go back to beginning of file and write the updated metadata
    fout.seekp(0, std::ios::beg);
    std::vector<uint8_t> meta(meta_size);
    gguf_get_meta_data(ctx_out, meta.data());
    fout.write((const char *)meta.data(), meta_size);

    fout.close();

    clip_free(ctx_clip);
    gguf_free(ctx_out);

    {
3756
3757
        LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
        LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
3758
3759
3760
3761
3762
3763
    }

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
3764
3765
3766
3767
3768
3769
3770
    switch (ctx->proj_type) {
        case PROJECTOR_TYPE_LDP:
            return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
        case PROJECTOR_TYPE_LDPV2:
            return ctx->vision_model.mm_model_peg_0_b->ne[0];
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
3771
            return ctx->vision_model.mm_2_w->ne[1];
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
        case PROJECTOR_TYPE_MLP_NORM:
            return ctx->vision_model.mm_3_b->ne[0];
        case PROJECTOR_TYPE_MINICPMV:
            if (ctx->minicpmv_version == 2) {
                return 4096;
            } else if (ctx->minicpmv_version == 3) {
                return 3584;
            } else if (ctx->minicpmv_version == 4) {
                return 3584;
            }
            GGML_ABORT("Unknown minicpmv version");
        case PROJECTOR_TYPE_GLM_EDGE:
            return ctx->vision_model.mm_model_mlp_3_w->ne[1];
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            return ctx->vision_model.mm_1_b->ne[0];
        case PROJECTOR_TYPE_GEMMA3:
            return ctx->vision_model.mm_input_proj_w->ne[0];
        case PROJECTOR_TYPE_IDEFICS3:
            return ctx->vision_model.projection->ne[1];
3792
3793
        case PROJECTOR_TYPE_INTERNVL:
            return ctx->vision_model.mm_3_w->ne[1];
3794
3795
        default:
            GGML_ABORT("Unknown projector type");
3796
    }
3797
3798
3799
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
3800
    if (ctx->proj_type == PROJECTOR_TYPE_MINICPMV) {
3801
3802
3803
3804
        return ctx->minicpmv_version;
    }
    return 0;
}
3805

3806
bool clip_is_glm(const struct clip_ctx * ctx) {
3807
    return ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE;
3808
}
3809

3810
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
3811
    return ctx->proj_type == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type == PROJECTOR_TYPE_QWEN25VL;
3812
3813
}

3814
3815
3816
3817
3818
3819
3820
3821
bool clip_is_llava(const struct clip_ctx * ctx) {
    return ctx->has_llava_projector;
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
    return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
}

3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
3834
3835
3836
3837
3838
3839
3840
3841

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
    return ctx->proj_type;
}