llama-sampling.cpp 83.9 KB
Newer Older
1
2
#include "llama-sampling.h"

3
#include "llama-impl.h"
4
5
6
#include "llama-vocab.h"
#include "llama-grammar.h"

7
#include <algorithm>
8
9
10
11
12
#include <cassert>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <cstdlib>
13
14
15
#include <cstring>
#include <ctime>
#include <numeric>
16
#include <random>
17
#include <unordered_map>
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include <stdexcept>

// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}

    T & front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[first];
    }

    const T & front() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[first];
    }

    T & back() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
    }

    const T & back() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
    }

    void push_back(const T & value) {
        if (capacity == 0) {
            throw std::runtime_error("ring buffer: capacity is zero");
        }

        if (sz == capacity) {
            // advance the start when buffer is full
            first = (first + 1) % capacity;
        } else {
            sz++;
        }
        data[pos] = value;
        pos = (pos + 1) % capacity;
    }

    T pop_front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        T value = data[first];
        first = (first + 1) % capacity;
        sz--;
        return value;
    }

    //T & operator[](size_t i) {
    //    if (i >= sz) {
    //        throw std::runtime_error("ring buffer: index out of bounds");
    //    }
    //    return data[(first + i) % capacity];
    //}

    //const T & at(size_t i) const {
    //    if (i >= sz) {
    //        throw std::runtime_error("ring buffer: index out of bounds");
    //    }
    //    return data[(first + i) % capacity];
    //}

    const T & rat(size_t i) const {
        if (i >= sz) {
            throw std::runtime_error("ring buffer: index out of bounds");
        }
        return data[(first + sz - i - 1) % capacity];
    }

    std::vector<T> to_vector() const {
        std::vector<T> result;
        result.reserve(sz);
        for (size_t i = 0; i < sz; i++) {
            result.push_back(data[(first + i) % capacity]);
        }
        return result;
    }

    void clear() {
        // here only reset the status of the buffer
        sz = 0;
        first = 0;
        pos = 0;
    }

    bool empty() const {
        return sz == 0;
    }

    size_t size() const {
        return sz;
    }

    size_t capacity = 0;
    size_t sz = 0;
    size_t first = 0;
    size_t pos = 0;

    std::vector<T> data;
};
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
    // iterator for the probabilities
#ifdef __GNUC__
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif

    struct probs_iterator {
        typedef std::input_iterator_tag iterator_category;
        typedef float value_type;
        typedef float * pointer;
        typedef float & reference;
        typedef ptrdiff_t difference_type;

        const llama_token_data * data;

        bool operator==(const probs_iterator & other) const { return data == other.data; }
        bool operator!=(const probs_iterator & other) const { return data != other.data; }
        const float & operator*() const { return data->p; }
        probs_iterator & operator++() { ++data; return *this; }
        probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
    };

#ifdef __GNUC__
    #pragma GCC diagnostic pop
#endif

    std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});

    return dist(rng);
}

/*
164
165
166
167
168
169
170
171
172
173
174
175
176
static void llama_log_softmax(float * array, size_t size) {
    float max_l = *std::max_element(array, array + size);
    float sum = 0.f;
    for (size_t i = 0; i < size; ++i) {
        float p = expf(array[i] - max_l);
        sum += p;
        array[i] = p;
    }

    for (size_t i = 0; i < size; ++i) {
        array[i] = logf(array[i] / sum);
    }
}
177
*/
178

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
    if (temp <= 0.0f) {
        // find the token with the highest logit and set the rest to -inf
        size_t max_i = 0;
        float  max_l = cur_p->data[0].logit;

        for (size_t i = 1; i < cur_p->size; ++i) {
            if (cur_p->data[i    ].logit > max_l) {
                cur_p->data[max_i].logit = -INFINITY;
                max_i = i;
                max_l = cur_p->data[i].logit;
            } else {
                cur_p->data[i].logit = -INFINITY;
            }
        }

        return;
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].logit /= temp;
    }
}

203
204
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
    GGML_ASSERT(cur_p->size > 0);
205
206

    // Sort the logits in descending order
207
208
    if (!cur_p->sorted) {
        std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
209
210
            return a.logit > b.logit;
        });
211
        cur_p->sorted = true;
212
213
    }

214
    float max_l = cur_p->data[0].logit;
215
    float cum_sum = 0.0f;
216
217
218
219

    for (size_t i = 0; i < cur_p->size; ++i) {
        float p = expf(cur_p->data[i].logit - max_l);
        cur_p->data[i].p = p;
220
221
222
        cum_sum += p;
    }

223
224
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= cum_sum;
225
226
227
    }
}

228
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
229
    // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
230
    // if (k >= (int32_t)cur_p->size) {
231
232
233
234
    //     return;
    // }

    if (k <= 0) {
235
        return;
236
237
    }

238
    k = std::min(k, (int) cur_p->size);
239
240

    // Sort scores in descending order
241
    if (!cur_p->sorted) {
242
243
244
245
        auto comp = [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        };
        if (k <= 128) {
246
            std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
247
248
249
250
251
252
253
        } else {
            constexpr int   nbuckets     = 128;
            constexpr float bucket_low   = -10.0f;
            constexpr float bucket_high  =  10.0f;
            constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
            constexpr float bucket_inter = -bucket_low * bucket_scale;

254
            std::vector<int> bucket_idx(cur_p->size);
255
256
            std::vector<int> histo(nbuckets, 0);

257
258
            for (int i = 0; i < (int)cur_p->size; ++i) {
                const float val = cur_p->data[i].logit;
259
                int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
260
                ib = std::max(0, std::min(nbuckets - 1, ib));
261
262
263
264
265
266
267
                bucket_idx[i] = ib;
                ++histo[ib];
            }
            int nhave = 0;
            int ib = nbuckets - 1;
            for ( ; ib >= 0; --ib) {
                nhave += histo[ib];
268
269
270
                if (nhave >= k) {
                    break;
                }
271
272
            }
            std::vector<llama_token_data> tmp_tokens(nhave);
273
            auto * ptr = tmp_tokens.data();
274
275
276
277
278
279
            std::vector<llama_token_data*> bucket_ptrs;
            bucket_ptrs.reserve(nbuckets - ib);
            for (int j = nbuckets - 1; j >= ib; --j) {
                bucket_ptrs.push_back(ptr);
                ptr += histo[j];
            }
280
            for (int i = 0; i < (int)cur_p->size; ++i) {
281
282
                int j = bucket_idx[i];
                if (j >= ib) {
283
                    *bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i];
284
285
286
287
288
                }
            }

            ptr = tmp_tokens.data();
            int ndone = 0;
289
            for (int j = nbuckets - 1; j > ib; --j) {
290
291
292
293
294
295
                std::sort(ptr, ptr + histo[j], comp);
                ptr += histo[j];
                ndone += histo[j];
            }
            std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);

296
            std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
297
298

        }
299
        cur_p->sorted = true;
300
    }
301

302
303
    cur_p->size = k;
}
304

305
306
307
308
309
310
311
312
313
static uint32_t get_rng_seed(uint32_t seed) {
    if (seed == LLAMA_DEFAULT_SEED) {
        // use system clock if std::random_device is not a true RNG
        static bool is_rd_prng = std::random_device().entropy() == 0;
        if (is_rd_prng) {
            return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
        }
        std::random_device rd;
        return rd();
314
    }
315
    return seed;
316
317
}

318
319
// llama_sampler API

320
321
322
323
324
325
326
struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) {
    return new llama_sampler {
        /* .iface = */ iface,
        /* .ctx   = */ ctx,
    };
}

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
const char * llama_sampler_name(const struct llama_sampler * smpl) {
    if (!smpl->iface) {
        return "(null)";
    }

    return smpl->iface->name(smpl);
}

void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
    if (smpl->iface->accept) {
        smpl->iface->accept(smpl, token);
    }
}

void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
    GGML_ASSERT(smpl->iface->apply);
    smpl->iface->apply(smpl, cur_p);
}

void llama_sampler_reset(struct llama_sampler * smpl) {
    if (smpl->iface->reset) {
        smpl->iface->reset(smpl);
    }
}

struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
    if (smpl->iface->clone) {
        return smpl->iface->clone(smpl);
    }

    if (smpl->ctx == nullptr) {
358
        return llama_sampler_init(
359
            /* .iface = */ smpl->iface,
360
361
            /* .ctx   = */ nullptr
        );
362
363
364
365
366
367
368
    }

    GGML_ABORT("the sampler does not support cloning");
}

void llama_sampler_free(struct llama_sampler * smpl) {
    if (smpl == nullptr) {
369
370
371
        return;
    }

372
373
374
375
376
377
378
379
380
381
    if (smpl->iface->free) {
        smpl->iface->free(smpl);
    }

    delete smpl;
}

llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
    const auto * logits = llama_get_logits_ith(ctx, idx);

382
383
384
385
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);

    const int n_vocab = llama_vocab_n_tokens(vocab);
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    // TODO: do not allocate each time
    std::vector<llama_token_data> cur;
    cur.reserve(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
    }

    llama_token_data_array cur_p = {
        /* .data       = */ cur.data(),
        /* .size       = */ cur.size(),
        /* .selected   = */ -1,
        /* .sorted     = */ false,
    };

    llama_sampler_apply(smpl, &cur_p);

    GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);

    auto token = cur_p.data[cur_p.selected].id;

    llama_sampler_accept(smpl, token);

    return token;
}

// sampler chain

static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
    return "chain";
}

static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    time_meas tm(chain->t_sample_us, chain->params.no_perf);

    for (auto * smpl : chain->samplers) {
        llama_sampler_accept(smpl, token);
    }

    chain->n_sample++;
}

static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    time_meas tm(chain->t_sample_us, chain->params.no_perf);

    for (auto * smpl : chain->samplers) {
        llama_sampler_apply(smpl, cur_p);
    }
}

static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    for (auto * smpl : chain->samplers) {
        llama_sampler_reset(smpl);
    }

    chain->t_sample_us = 0;
    chain->n_sample    = 0;
}

static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
    const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;

    auto * result = llama_sampler_chain_init(chain_src->params);

    for (auto * smpl : chain_src->samplers) {
        llama_sampler_chain_add(result, llama_sampler_clone(smpl));
    }

    return result;
}

static void llama_sampler_chain_free(struct llama_sampler * smpl) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    for (auto * smpl : chain->samplers) {
        llama_sampler_free(smpl);
    }

    delete chain;
}

static struct llama_sampler_i llama_sampler_chain_i = {
    /* .name   = */ llama_sampler_chain_name,
    /* .accept = */ llama_sampler_chain_accept,
    /* .apply  = */ llama_sampler_chain_apply,
    /* .reset  = */ llama_sampler_chain_reset,
    /* .clone  = */ llama_sampler_chain_clone,
    /* .free   = */ llama_sampler_chain_free,
};

struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
483
    return llama_sampler_init(
484
485
486
487
488
489
        /* .iface = */ &llama_sampler_chain_i,
        /* .ctx   = */ new llama_sampler_chain {
            /* .params      = */ params,
            /* .samplers    = */ {},
            /* .t_sample_us = */ 0,
            /* .n_sample    = */ 0,
490
491
        }
    );
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
}

void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
    auto * p = (llama_sampler_chain *) chain->ctx;
    p->samplers.push_back(smpl);
}

struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
    const auto * p = (const llama_sampler_chain *) chain->ctx;

    if (i < 0 || (size_t) i >= p->samplers.size()) {
        return nullptr;
    }

    return p->samplers[i];
}

struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
    auto * p = (llama_sampler_chain *) chain->ctx;

    if (i < 0 || (size_t) i >= p->samplers.size()) {
        return nullptr;
    }

    auto * result = p->samplers[i];
    p->samplers.erase(p->samplers.begin() + i);

    return result;
}

int llama_sampler_chain_n(const struct llama_sampler * chain) {
    const auto * p = (const llama_sampler_chain *) chain->ctx;

    return p->samplers.size();
}

//
// samplers
//

// greedy

static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
    return "greedy";
}

static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
    cur_p->selected = 0;
    for (size_t i = 1; i < cur_p->size; ++i) {
        if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
            cur_p->selected = i;
        }
    }
}

static struct llama_sampler_i llama_sampler_greedy_i = {
    /* .name   = */ llama_sampler_greedy_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_greedy_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ nullptr,
    /* .free   = */ nullptr,
};

struct llama_sampler * llama_sampler_init_greedy() {
557
    return llama_sampler_init(
558
        /* .iface = */ &llama_sampler_greedy_i,
559
560
        /* .ctx   = */ nullptr
    );
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
}

// dist

struct llama_sampler_dist {
    const uint32_t seed;
          uint32_t seed_cur;

    std::mt19937 rng;
};

static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
    return "dist";
}

static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_dist *) smpl->ctx;
578
579
580

    llama_sampler_softmax_impl(cur_p);

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
}

static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
    auto * result = llama_sampler_init_dist(ctx->seed);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_dist *) result->ctx;

        result_ctx->rng = ctx->rng;
    }

    return result;
}

static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_dist *) smpl->ctx;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static void llama_sampler_dist_free(struct llama_sampler * smpl) {
    delete (llama_sampler_dist *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_dist_i = {
    /* .name   = */ llama_sampler_dist_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_dist_apply,
    /* .reset  = */ llama_sampler_dist_reset,
    /* .clone  = */ llama_sampler_dist_clone,
    /* .free   = */ llama_sampler_dist_free,
};

struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
    auto seed_cur = get_rng_seed(seed);
619
    return llama_sampler_init(
620
621
622
623
624
        /* .iface = */ &llama_sampler_dist_i,
        /* .ctx   = */ new llama_sampler_dist {
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .rng      = */ std::mt19937(seed_cur),
625
626
        }
    );
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
}

// softmax

static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
    return "softmax";
}

static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
    llama_sampler_softmax_impl(cur_p);
}

static struct llama_sampler_i llama_sampler_softmax_i = {
    /* .name   = */ llama_sampler_softmax_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_softmax_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ nullptr,
    /* .free   = */ nullptr,
};

struct llama_sampler * llama_sampler_init_softmax() {
649
    return llama_sampler_init(
650
        /* .iface = */ &llama_sampler_softmax_i,
651
652
        /* .ctx   = */ nullptr
    );
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
}

// top-k

struct llama_sampler_top_k {
    const int32_t k;
};

static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
    return "top-k";
}

static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
    llama_sampler_top_k_impl(cur_p, ctx->k);
}

static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
    return llama_sampler_init_top_k(ctx->k);
}

static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
    delete (llama_sampler_top_k *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_top_k_i = {
    /* .name   = */ llama_sampler_top_k_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_top_k_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_top_k_clone,
    /* .free   = */ llama_sampler_top_k_free,
};

struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
689
    return llama_sampler_init(
690
691
692
        /* .iface = */ &llama_sampler_top_k_i,
        /* .ctx   = */ new llama_sampler_top_k {
            /* .k = */ k,
693
694
        }
    );
695
696
697
698
699
700
701
702
703
704
705
706
}

// top-p

struct llama_sampler_top_p {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
    return "top-p";
}
707

708
709
710
711
712
713
714
715
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_top_p *) smpl->ctx;

    if (ctx->p >= 1.0f) {
        return;
    }

    llama_sampler_softmax_impl(cur_p);
716
717
718

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
719
    size_t last_idx = cur_p->size;
720

721
722
    for (size_t i = 0; i < cur_p->size; ++i) {
        cum_sum += cur_p->data[i].p;
723
724
725

        // Check if the running sum is at least p or if we have kept at least min_keep tokens
        // we set the last index to i+1 to indicate that the current iterate should be included in the set
726
        if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
727
728
729
730
731
732
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the top-p tokens
733
734
    cur_p->size = last_idx;
}
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
    return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
}

static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
    delete (llama_sampler_top_p *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_top_p_i = {
    /* .name   = */ llama_sampler_top_p_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_top_p_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_top_p_clone,
    /* .free   = */ llama_sampler_top_p_free,
};

struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
755
    return llama_sampler_init(
756
757
758
759
        /* .iface = */ &llama_sampler_top_p_i,
        /* .ctx   = */ new llama_sampler_top_p {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
760
761
        }
    );
762
763
764
765
766
767
768
769
770
771
772
}

// min-p

struct llama_sampler_min_p {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
    return "min-p";
773
774
}

775
776
777
778
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_min_p *) smpl->ctx;

    if (ctx->p <= 0.0f || !cur_p->size) {
779
780
781
782
783
        return;
    }

    bool min_p_applied = false;

784
785
    // if the cur_p aren't sorted, try the unsorted implementation first
    if (!cur_p->sorted) {
786
787
788
        std::vector<llama_token_data> filtered_tokens;

        float max_logit = -FLT_MAX;
789
790
        for (size_t i = 0; i < cur_p->size; ++i) {
            max_logit = std::max(max_logit, cur_p->data[i].logit);
791
        }
792
        const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
793

794
795
796
        for (size_t i = 0; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit >= min_logit) {
                filtered_tokens.push_back(cur_p->data[i]);
797
798
799
800
            }
        }

        // if we have enough values the operation was a success
801
802
803
        if (filtered_tokens.size() >= ctx->min_keep) {
            memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
            cur_p->size = filtered_tokens.size();
804
805
806
807
            min_p_applied = true;
        }
    }

808
    // if the cur_p are sorted or the unsorted implementation failed, use this implementation
809
810
    if (!min_p_applied) {
        // Sort the logits in descending order
811
812
        if (!cur_p->sorted) {
            std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
813
814
                return a.logit > b.logit;
            });
815
            cur_p->sorted = true;
816
817
        }

818
        const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
819
820
        size_t i = 1; // first token always matches

821
822
        for (; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
823
824
825
826
827
                break; // prob too small
            }
        }

        // Resize the output vector to keep only the matching tokens
828
        cur_p->size = i;
829
    }
830
}
831

832
833
834
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
    return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
835
836
}

837
838
839
840
841
842
843
844
845
846
847
848
849
850
static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
    delete (llama_sampler_min_p *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_min_p_i = {
    /* .name   = */ llama_sampler_min_p_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_min_p_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_min_p_clone,
    /* .free   = */ llama_sampler_min_p_free,
};

struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
851
    return llama_sampler_init(
852
853
854
855
        /* .iface = */ &llama_sampler_min_p_i,
        /* .ctx   = */ new llama_sampler_min_p {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
856
857
        }
    );
858
859
860
861
862
863
864
865
866
867
868
}

// typical

struct llama_sampler_typical {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
    return "typical";
869
870
}

871
872
873
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_typical *) smpl->ctx;

874
875
    // Reference implementation:
    // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
876
    if (ctx->p >= 1.0f) {
877
878
879
880
        return;
    }

    // Compute the softmax of logits and calculate entropy
881
    llama_sampler_softmax_impl(cur_p);
882
883

    float entropy = 0.0f;
884
885
    for (size_t i = 0; i < cur_p->size; ++i) {
        entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
886
887
888
889
    }

    // Compute the absolute difference between negative log probability and entropy for each candidate
    std::vector<float> shifted_scores;
890
891
    for (size_t i = 0; i < cur_p->size; ++i) {
        float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
892
893
894
895
        shifted_scores.push_back(shifted_score);
    }

    // Sort tokens based on the shifted_scores and their corresponding indices
896
    std::vector<size_t> indices(cur_p->size);
897
898
899
900
901
902
903
904
905
906
907
908
    std::iota(indices.begin(), indices.end(), 0);

    std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
        return shifted_scores[a] < shifted_scores[b];
    });

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = indices.size();

    for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
909
        cum_sum += cur_p->data[idx].p;
910
911

        // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
912
        if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
913
914
915
916
917
918
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the locally typical tokens
919
    std::vector<llama_token_data> cur_p_new;
920
921
    for (size_t i = 0; i < last_idx; ++i) {
        size_t idx = indices[i];
922
        cur_p_new.push_back(cur_p->data[idx]);
923
924
    }

925
926
927
928
929
    // Replace the data in cur_p with the cur_p_new data
    std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
    cur_p->size = cur_p_new.size();
    cur_p->sorted = false;
}
930

931
932
933
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
    return llama_sampler_init_typical(ctx->p, ctx->min_keep);
934
935
}

936
937
938
static void llama_sampler_typical_free(struct llama_sampler * smpl) {
    delete (llama_sampler_typical *) smpl->ctx;
}
939

940
941
942
943
944
945
946
947
948
949
static struct llama_sampler_i llama_sampler_typical_i = {
    /* .name   = */ llama_sampler_typical_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_typical_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_typical_clone,
    /* .free   = */ llama_sampler_typical_free,
};

struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
950
    return llama_sampler_init(
951
952
953
954
        /* .iface = */ &llama_sampler_typical_i,
        /* .ctx   = */ new llama_sampler_typical {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
955
956
        }
    );
957
958
959
960
961
962
963
964
965
966
967
968
969
970
}

// temp

struct llama_sampler_temp {
    const float temp;
};

static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
    return "temp";
}

static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_temp *) smpl->ctx;
971
972

    llama_sampler_temp_impl(cur_p, ctx->temp);
973
}
974

975
976
977
978
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
    return llama_sampler_init_temp(ctx->temp);
}
979

980
981
982
static void llama_sampler_temp_free(struct llama_sampler * smpl) {
    delete (llama_sampler_temp *) smpl->ctx;
}
983

984
985
986
987
988
989
990
991
992
993
static struct llama_sampler_i llama_sampler_temp_i = {
    /* .name   = */ llama_sampler_temp_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_temp_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_temp_clone,
    /* .free   = */ llama_sampler_temp_free,
};

struct llama_sampler * llama_sampler_init_temp(float temp) {
994
    return llama_sampler_init(
995
996
997
        /* .iface = */ &llama_sampler_temp_i,
        /* .ctx   = */ new llama_sampler_temp {
            /*.temp = */ temp,
998
999
        }
    );
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
}

// temp-ext

struct llama_sampler_temp_ext {
    const float temp;
    const float delta;
    const float exponent;
};

static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
    return "temp-ext";
}

static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
    if (ctx->delta > 0) {
        const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
        const float max_temp = ctx->temp + ctx->delta;
1019

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        float exponent_val = ctx->exponent;

        // no need to do anything if there is only one (or zero) candidates
        if (cur_p->size <= 1) {
            return;
        }

        // Calculate maximum possible entropy
        float max_entropy = -logf(1.0f / cur_p->size);

        llama_sampler_softmax_impl(cur_p);

        // Calculate entropy of the softmax probabilities
        float entropy = 0.0f;
        for (size_t i = 0; i < cur_p->size; ++i) {
            float prob = cur_p->data[i].p;
            if (prob > 0.0f) { // Ensure no log(0)
                entropy -= prob * logf(prob);
            }
        }

        // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
        float normalized_entropy = entropy / max_entropy;

        // Map the normalized entropy to the desired temperature range using the power function
        float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);

    #ifdef DEBUG
        LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
        LLAMA_LOG_INFO("Entropy: %f\n", entropy);
        LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
        LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
        LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
        LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
    #endif

        // Apply the dynamically calculated temperature scaling
1057
        llama_sampler_temp_impl(cur_p, dyn_temp);
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

        // Re-compute softmax probabilities after scaling logits with dynamic temperature
        const double max_l_double = cur_p->data[0].logit;

        double cum_sum_double = 0.0;
        for (size_t i = 0; i < cur_p->size; ++i) {
            double p = exp(cur_p->data[i].logit - max_l_double);
            cur_p->data[i].p = p; // Store the scaled probability
            cum_sum_double += p;
        }

        for (size_t i = 0; i < cur_p->size; ++i) {
            cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
        }

    #ifdef DEBUG
        // Print the updated top 25 probabilities after temperature scaling
        LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
        for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
            LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
        }
    #endif
    } else {
1081
        llama_sampler_temp_impl(cur_p, ctx->temp);
1082
    }
1083
}
1084

1085
1086
1087
1088
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
    return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
}
1089

1090
1091
1092
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
    delete (llama_sampler_temp_ext *) smpl->ctx;
}
1093

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
static struct llama_sampler_i llama_sampler_temp_ext_i = {
    /* .name   = */ llama_sampler_temp_ext_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_temp_ext_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_temp_ext_clone,
    /* .free   = */ llama_sampler_temp_ext_free,
};

struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
1104
    return llama_sampler_init(
1105
1106
1107
1108
1109
        /* .iface = */ &llama_sampler_temp_ext_i,
        /* .ctx   = */ new llama_sampler_temp_ext {
            /* .temp     = */ temp,
            /* .delta    = */ delta,
            /* .exponent = */ exponent,
1110
1111
        }
    );
1112
1113
}

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
// xtc

struct llama_sampler_xtc {
    const float    probability;
    const float    threshold;
    const size_t   min_keep;

    const uint32_t seed;
    uint32_t       seed_cur;

    std::mt19937   rng;
};

static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
    return "xtc";
}

static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_xtc *) smpl->ctx;

    if (ctx->probability <= 0.0f
        || ctx->threshold > 0.5f
        || cur_p->size < 2) {
        return;
    }

    std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
    float chance = distribution(ctx->rng);
    if (chance > ctx->probability) return;

    // in case it's not sorted/recalculated yet
    llama_sampler_softmax_impl(cur_p);

    int pos_last = 0;

    for (size_t i = 0; i < cur_p->size; ++i) {
        if (cur_p->data[i].p >= ctx->threshold) {
            pos_last = i;
        } else break;
    }

    if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
        cur_p->data += pos_last;
        cur_p->size -= pos_last;
    }
}

static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
    auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_xtc *) result->ctx;

        result_ctx->rng = ctx->rng;
    }

    return result;
}

static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
    delete (llama_sampler_xtc *) smpl->ctx;
}

static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_xtc *) smpl->ctx;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static struct llama_sampler_i llama_sampler_xtc_i = {
    /* .name   = */ llama_sampler_xtc_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sample_xtc_apply,
    /* .reset  = */ llama_sampler_xtc_reset,
    /* .clone  = */ llama_sampler_xtc_clone,
    /* .free   = */ llama_sampler_xtc_free,
};

struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
    auto seed_cur = get_rng_seed(seed);
1196
    return llama_sampler_init(
1197
1198
1199
1200
1201
1202
1203
1204
        /* .iface = */ &llama_sampler_xtc_i,
        /* .ctx   = */ new llama_sampler_xtc {
            /* .probability   = */ p,
            /* .threshold     = */ t,
            /* .min_keep      = */ min_keep,
            /* .seed          = */ seed,
            /* .seed_cur      = */ seed_cur,
            /* .rng           = */ std::mt19937(seed_cur),
1205
1206
        }
    );
1207
1208
}

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
// mirostat

struct llama_sampler_mirostat {
    const int32_t n_vocab;

    const uint32_t seed;
          uint32_t seed_cur;

    const float tau;
    const float eta;

    const int32_t m;

    float mu;
1223

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    std::mt19937 rng;
};

static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
    return "mirostat";
}

static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_mirostat *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

    // Estimate s_hat using the most probable m tokens
    float s_hat = 0.0;
    float sum_ti_bi = 0.0;
    float sum_ti_sq = 0.0;
    for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
        float t_i = logf(float(i + 2) / float(i + 1));
        float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
        sum_ti_bi += t_i * b_i;
        sum_ti_sq += t_i * t_i;
1245
    }
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    s_hat = sum_ti_bi / sum_ti_sq;

    // Compute k from the estimated s_hat and target surprise value
    float epsilon_hat = s_hat - 1;
    float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);

    llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
    llama_sampler_softmax_impl(cur_p);

    const int idx = llama_sample_dist(cur_p, ctx->rng);

    cur_p->selected = idx;

    float observed_surprise = -log2f(cur_p->data[idx].p);
    float e = observed_surprise - ctx->tau;
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    // Update mu using the learning rate and error
    ctx->mu = ctx->mu - ctx->eta * e;
}

static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
    auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;

        result_ctx->mu  = ctx->mu;
        result_ctx->rng = ctx->rng;
1276
    }
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

    return result;
}

static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
    ctx->mu = 2.0f*ctx->tau;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
    delete (llama_sampler_mirostat *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_mirostat_i = {
    /* .name   = */ llama_sampler_mirostat_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_mirostat_apply,
    /* .reset  = */ llama_sampler_mirostat_reset,
    /* .clone  = */ llama_sampler_mirostat_clone,
    /* .free   = */ llama_sampler_mirostat_free,
};

struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
    auto seed_cur = get_rng_seed(seed);
1303
    return llama_sampler_init(
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
        /* .iface = */ &llama_sampler_mirostat_i,
        /* .ctx   = */ new llama_sampler_mirostat {
            /* .n_vocab  = */ n_vocab,
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .tau      = */ tau,
            /* .eta      = */ eta,
            /* .m        = */ m,
            /* .mu       = */ 2.0f*tau,
            /* .rng      = */ std::mt19937(seed_cur),
1314
1315
        }
    );
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
}

// mirostat v2

struct llama_sampler_mirostat_v2 {
    const uint32_t seed;
          uint32_t seed_cur;

    const float tau;
    const float eta;

    float mu;

    std::mt19937 rng;
};

static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
    return "mirostat-v2";
}

static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

    // Truncate the words with surprise values greater than mu
    cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
        return -log2f(candidate.p) > ctx->mu;
    }));

    if (cur_p->size == 0) {
        cur_p->size = 1;
1348
1349
    }

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
    // Normalize the probabilities of the remaining words
    llama_sampler_softmax_impl(cur_p);

    const int idx = llama_sample_dist(cur_p, ctx->rng);

    cur_p->selected = idx;

    float observed_surprise = -log2f(cur_p->data[idx].p);
    float e = observed_surprise - ctx->tau;

    // Update mu using the learning rate and error
    ctx->mu = ctx->mu - ctx->eta * e;
}

static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
    ctx->mu = 2.0f*ctx->tau;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;

    auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;

        result_ctx->mu  = ctx->mu;
        result_ctx->rng = ctx->rng;
1382
1383
    }

1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
    return result;
}

static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
    delete (llama_sampler_mirostat_v2 *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
    /* .name   = */ llama_sampler_mirostat_v2_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_mirostat_v2_apply,
    /* .reset  = */ llama_sampler_mirostat_v2_reset,
    /* .clone  = */ llama_sampler_mirostat_v2_clone,
    /* .free   = */ llama_sampler_mirostat_v2_free,
};

struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
    auto seed_cur = get_rng_seed(seed);
1402
    return llama_sampler_init(
1403
1404
1405
1406
1407
1408
1409
1410
        /* .iface = */ &llama_sampler_mirostat_v2_i,
        /* .ctx   = */ new llama_sampler_mirostat_v2 {
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .tau      = */ tau,
            /* .eta      = */ eta,
            /* .mu       = */ 2.0f*tau,
            /* .rng      = */ std::mt19937(seed_cur),
1411
1412
        }
    );
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
}

// grammar

struct llama_sampler_grammar {
    const struct llama_vocab * vocab;

    std::string grammar_str;
    std::string grammar_root;

    struct llama_grammar * grammar;
};

static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
    return "grammar";
}

static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (ctx->grammar) {
        llama_grammar_accept_impl(*ctx->grammar, token);
    }
}

static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (ctx->grammar) {
        llama_grammar_apply_impl(*ctx->grammar, cur_p);
    }
}

1444
1445
1446
1447
1448
1449
1450
1451
1452
// Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
static struct llama_sampler * llama_sampler_init_grammar_impl(
        const struct llama_vocab * vocab,
                      const char * grammar_str,
                      const char * grammar_root,
                              bool lazy,
                     const char ** trigger_words,
                            size_t num_trigger_words,
               const llama_token * trigger_tokens,
1453
1454
1455
                            size_t num_trigger_tokens,
                     const char ** trigger_patterns,
                            size_t num_trigger_patterns);
1456

1457
1458
1459
1460
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (!ctx->grammar) {
        return;
1461
    }
1462

1463
1464
1465
1466
    std::vector<const char *>  trigger_patterns_c;
    trigger_patterns_c.reserve(ctx->grammar->trigger_patterns.size());
    for (auto & trigger_pattern : ctx->grammar->trigger_patterns) {
        trigger_patterns_c.push_back(trigger_pattern.pattern.c_str());
1467
    }
1468

1469
    auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, nullptr, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
1470
                                                 ctx->grammar->lazy, trigger_patterns_c.data(), trigger_patterns_c.size(),
1471
                                                 ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
1472
1473
1474

    llama_grammar_free_impl(ctx->grammar);
    ctx->grammar = grammar_new;
1475
1476
}

1477
1478
1479
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;

1480
1481
    auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0, nullptr, 0);
    GGML_ASSERT(result);
1482
1483
1484
1485

    // copy the state
    {
        auto * result_ctx = (llama_sampler_grammar *) result->ctx;
1486

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
        if (ctx->grammar) {
            result_ctx->grammar_str  = ctx->grammar_str;
            result_ctx->grammar_root = ctx->grammar_root;

            result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
        }
    }

    return result;
}

static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
    const auto * ctx = (llama_sampler_grammar *) smpl->ctx;

    if (ctx->grammar) {
        llama_grammar_free_impl(ctx->grammar);
    }

    delete ctx;
}

static struct llama_sampler_i llama_sampler_grammar_i = {
    /* .name   = */ llama_sampler_grammar_name,
    /* .accept = */ llama_sampler_grammar_accept_impl,
    /* .apply  = */ llama_sampler_grammar_apply,
    /* .reset  = */ llama_sampler_grammar_reset,
    /* .clone  = */ llama_sampler_grammar_clone,
    /* .free   = */ llama_sampler_grammar_free,
};

1517
1518
1519
1520
1521
1522
1523
1524
static struct llama_sampler * llama_sampler_init_grammar_impl(
        const struct llama_vocab * vocab,
                      const char * grammar_str,
                      const char * grammar_root,
                              bool lazy,
                     const char ** trigger_words,
                            size_t num_trigger_words,
               const llama_token * trigger_tokens,
1525
1526
1527
                            size_t num_trigger_tokens,
                     const char ** trigger_patterns,
                            size_t num_trigger_patterns) {
1528
1529
1530
    auto * ctx = new llama_sampler_grammar;

    if (grammar_str != nullptr && grammar_str[0] != '\0') {
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
        // TODO: remove trigger_words support.
        if (trigger_words != nullptr && num_trigger_words > 0) {
            GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
            std::string trigger_pattern("[\\s\\S]*?(");
            for (size_t i = 0; i < num_trigger_words; ++i) {
                static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
                if (i > 0) {
                    trigger_pattern += "|";
                }
                trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
            }
            trigger_pattern += ")[\\s\\S]*";
            auto trigger_pattern_c = trigger_pattern.c_str();
            trigger_patterns = &trigger_pattern_c;
            num_trigger_patterns = 1;
        }
1547
        *ctx = {
1548
            /* .vocab        = */ vocab,
1549
1550
            /* .grammar_str  = */ grammar_str,
            /* .grammar_root = */ grammar_root,
1551
            /* .grammar      = */ llama_grammar_init_impl(vocab, nullptr, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens),
1552
        };
1553
1554
1555
1556
        if (!ctx->grammar) {
            delete ctx;
            return nullptr;
        }
1557
1558
    } else {
        *ctx = {
1559
            /* .vocab        = */ vocab,
1560
1561
1562
1563
            /* .grammar_str  = */ {},
            /* .grammar_root = */ {},
            /* .grammar      = */ nullptr,
        };
1564
1565
    }

1566
    return llama_sampler_init(
1567
        /* .iface = */ &llama_sampler_grammar_i,
1568
1569
1570
1571
1572
1573
1574
1575
        /* .ctx   = */ ctx
    );
}

struct llama_sampler * llama_sampler_init_grammar(
        const struct llama_vocab * vocab,
                      const char * grammar_str,
                      const char * grammar_root) {
1576
    return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0, nullptr, 0);
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
}

struct llama_sampler * llama_sampler_init_grammar_lazy(
        const struct llama_vocab * vocab,
                      const char * grammar_str,
                      const char * grammar_root,
                     const char ** trigger_words,
                            size_t num_trigger_words,
               const llama_token * trigger_tokens,
                            size_t num_trigger_tokens) {
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
    return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens, nullptr, 0);
}

struct llama_sampler * llama_sampler_init_grammar_lazy_patterns(
        const struct llama_vocab * vocab,
                      const char * grammar_str,
                      const char * grammar_root,
                     const char ** trigger_patterns,
                            size_t num_trigger_patterns,
               const llama_token * trigger_tokens,
                            size_t num_trigger_tokens) {
    return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, nullptr, 0, trigger_tokens, num_trigger_tokens, trigger_patterns, num_trigger_patterns);
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
}

// penalties

struct llama_sampler_penalties {
    const int32_t penalty_last_n;
    const float   penalty_repeat;
    const float   penalty_freq;
    const float   penalty_present;

    ring_buffer<llama_token> prev;
1610
1611
1612

    // a frequency map to count token occurrences
    std::unordered_map<llama_token, int> token_count;
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
};

static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
    return "penalties";
}

static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;
    if (ctx->penalty_last_n == 0) {
        return;
1623
    }
1624

1625
    ctx->token_count[token]++;
1626

1627
1628
1629
    // if the ring buffer is full, remove the oldest token
    if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) {
        const auto old = ctx->prev.front();
1630

1631
1632
1633
        ctx->token_count[old]--;
        if (ctx->token_count[old] == 0) {
            ctx->token_count.erase(old);
1634
1635
1636
        }
    }

1637
    ctx->prev.push_back(token);
1638

1639
1640
1641
1642
1643
#if 0
    // sanity check
    std::unordered_map<llama_token, int> tmp;
    for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
        tmp[ctx->prev.rat(i)]++;
1644
    }
1645

1646
1647
1648
1649
1650
1651
    assert(ctx->token_count == tmp);
#endif
}

static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;
1652

1653
1654
1655
    if ((ctx->penalty_last_n == 0) ||
        (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
        return;
1656
1657
    }

1658
1659
    // Apply frequency and presence penalties to the cur_p
    for (size_t i = 0; i < cur_p->size; ++i) {
1660
1661
        const auto token_iter = ctx->token_count.find(cur_p->data[i].id);
        if (token_iter == ctx->token_count.end()) {
1662
1663
1664
1665
1666
            continue;
        }

        const int count = token_iter->second;

1667
1668
        assert(count > 0 && count <= ctx->penalty_last_n);

1669
1670
        // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
        // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
1671
1672
        if (cur_p->data[i].logit <= 0) {
            cur_p->data[i].logit *= ctx->penalty_repeat;
1673
        } else {
1674
            cur_p->data[i].logit /= ctx->penalty_repeat;
1675
1676
        }

1677
        cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
1678
1679
    }

1680
    cur_p->sorted = false;
1681
1682
}

1683
1684
1685
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;
    ctx->prev.clear();
1686
    ctx->token_count.clear();
1687
}
1688

1689
1690
1691
1692
1693
1694
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
    auto * result = llama_sampler_init_penalties(
            ctx->penalty_last_n,
            ctx->penalty_repeat,
            ctx->penalty_freq,
1695
            ctx->penalty_present);
1696
1697
1698
1699

    // copy the state
    {
        auto * result_ctx = (llama_sampler_penalties *) result->ctx;
1700

1701
        result_ctx->prev = ctx->prev;
1702
1703
    }

1704
    return result;
1705
1706
}

1707
1708
1709
static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
    delete (llama_sampler_penalties *) smpl->ctx;
}
1710

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
static struct llama_sampler_i llama_sampler_penalties_i = {
    /* .name   = */ llama_sampler_penalties_name,
    /* .accept = */ llama_sampler_penalties_accept,
    /* .apply  = */ llama_sampler_penalties_apply,
    /* .reset  = */ llama_sampler_penalties_reset,
    /* .clone  = */ llama_sampler_penalties_clone,
    /* .free   = */ llama_sampler_penalties_free,
};

struct llama_sampler * llama_sampler_init_penalties(
        int32_t penalty_last_n,
        float penalty_repeat,
        float penalty_freq,
1724
        float penalty_present) {
1725
1726
    penalty_last_n = std::max(penalty_last_n, 0);

1727
    return llama_sampler_init(
1728
1729
1730
1731
1732
1733
1734
        /* .iface = */ &llama_sampler_penalties_i,
        /* .ctx   = */ new llama_sampler_penalties {
            /* .penalty_last_n  = */ penalty_last_n,
            /* .penalty_repeat  = */ penalty_repeat,
            /* .penalty_freq    = */ penalty_freq,
            /* .penalty_present = */ penalty_present,
            /* .prev            = */ ring_buffer<llama_token>(penalty_last_n),
1735
            /* .token_count     = */ {},
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
        }
    );
}

// top-n-sigma

struct llama_sampler_top_n_sigma {
    const float n;
};

static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
    return "top-n-sigma";
}

static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;

1753
1754
1755
1756
    if (ctx->n <= 0.0f || cur_p->size <= 1) {
        return;
    }

1757
1758
1759
    // find max logit and calculate mean
    float max = cur_p->data[0].logit;
    float logits_sum = 0;
1760
    size_t valid_count = 0;
1761
    for (size_t i = 0; i < cur_p->size; ++i) {
1762
1763
1764
1765
1766
1767
1768
        // Only count non-negative infinity values
        if (cur_p->data[i].logit != -INFINITY) {
            if (cur_p->data[i].logit > max) {
                max = cur_p->data[i].logit;
            }
            logits_sum += cur_p->data[i].logit;
            valid_count++;
1769
1770
        }
    }
1771
    float mean = valid_count > 0 ? logits_sum/valid_count : 0;
1772
1773
1774
1775

    // calculate standard deviation
    float acc = 0;
    for (size_t i = 0; i < cur_p->size; ++i) {
1776
1777
1778
1779
        // Skip -infinity in std calculation
        if (cur_p->data[i].logit != -INFINITY) {
            acc += pow(cur_p->data[i].logit - mean, 2);
        }
1780
    }
1781
    float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816

    //apply mask
    for (size_t i = 0; i < cur_p->size; ++i) {
        if (cur_p->data[i].logit < max - (ctx->n * std)) {
            cur_p->data[i].logit = -INFINITY;
        }
    }
    llama_sampler_softmax_impl(cur_p);
}

static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
    return llama_sampler_init_top_n_sigma(ctx->n);
}

static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
    delete (llama_sampler_top_n_sigma *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
    /* .name   = */ llama_sampler_top_n_sigma_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_top_n_sigma_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_top_n_sigma_clone,
    /* .free   = */ llama_sampler_top_n_sigma_free,
};

struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
    return llama_sampler_init(
        /* .iface = */ &llama_sampler_top_n_sigma_i,
        /* .ctx   = */ new llama_sampler_top_n_sigma {
            /* .n = */ n,
        }
    );
1817
}
1818

1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
// DRY

struct llama_sampler_dry {
    int32_t total_context_size;

    const float   dry_multiplier;
    const float   dry_base;
    const int32_t dry_allowed_length;
    const int32_t dry_penalty_last_n;

    std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers;
    std::vector<int> dry_repeat_count;
    std::unordered_map<llama_token, int> dry_max_token_repeat;
    ring_buffer<llama_token> last_tokens;
};

// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
1837
1838
    for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
        std::string word = vocab.detokenize({token_id}, true);
1839
1840
1841
        if (word.find(str) != std::string::npos) {
            token_sequences.emplace(token_id, std::vector<llama_token>());
        } else {
1842
1843
            size_t word_len = word.size();
            size_t str_len = str.size();
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
            size_t pos = -1;
            while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
                bool match = true;
                size_t i;
                for (i = 1; i < str_len && i + pos < word_len; ++i) {
                    if (word[pos + i] != str[i]) {
                        match = false;
                        break;
                    }
                }
                if (match) {
1855
                    std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
                    if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
                        tokenization.resize(max_tail_len);
                    }

                    // Ensure we don't already have a duplicate matching tokenization
                    auto its = token_sequences.equal_range(token_id);
                    bool found = false;
                    for (auto it = its.first; it != its.second; ++it) {
                        if (tokenization == it->second) {
                            found = true;
                            break;
                        }
                    }
                    if (!found) {
                        token_sequences.emplace(token_id, tokenization);
                    }
                }
            }
        }
    }
}

static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) {
    return "dry";
}

static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;
    if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
        return;
    }

    ctx->last_tokens.push_back(token);
}

// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;

    if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
        return;
    }

    int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0);
    int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size);

    if (last_n_repeat <= ctx->dry_allowed_length) {
        return;
    }

    ctx->dry_repeat_count.assign(last_n_repeat, 0);
    ctx->dry_max_token_repeat.clear();

    // Step 1: Look for restart sequences to limit the maximum repetition length.
    // Work backwards through the context looking for any token that begins a restart sequence.
    //
    // The collection `restart_sequences` is a mapping from a "head" token to all "tail"
    // sequences that together comprise a restart sequence. This allows us to quickly check
    // whether each token is the head of a complete sequence. Most restart sequences are actually
    // a single token, and for these the "tail" is an empty vector.
    //
    // If the token is a "head", test all restart sequences that begin with this token
    // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
    // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
    // longest matching sequence (if any) is used to limit the maximum repetition length.
    //
    // Note that in the case case of a short sequence contained in a longer one, this might fail to
    // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
    // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
    // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
    //
    // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
    // have already clamped the maximum tail sequence length when generating `restart_sequences`.
    // With clamping, this scan is O(N) in the context length.

    int rep_limit = last_n_repeat;
    for (int i = 0; i < last_n_repeat; ++i) {
        llama_token token = ctx->last_tokens.rat(i);
        auto its = ctx->dry_processed_breakers.equal_range(token);
        if (its.first == ctx->dry_processed_breakers.end()) {
            continue;
        }
        int longest_match = -1;
        for (auto it = its.first; it != its.second; ++it) {
            // Note that (*it) does not contain the head character, so seq_len will be
            // the restart sequence length minus 1.
            // In the common case of a single-token restart sequence, (*it) will be empty
            // and we will trivially match.
            int seq_len = (int)it->second.size();
            if (seq_len > longest_match && seq_len <= (int)i) {
                bool match = true;
                for (int offset = 0; offset < seq_len; ++offset) {
                    // The -1 when indexing `last_tokens` is because we already matched the head.
                    if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) {
                        match = false;
                        break;
                    }
                }
                if (match) {
                    longest_match = seq_len;
                }
            }
        }
        if (longest_match >= 0) {
            // We found a restart sequence starting `i` tokens from the end and continuing for
            // `longest_match` tokens.
            rep_limit = i - longest_match;
            break;
        }
    }
    if (rep_limit < ctx->dry_allowed_length) {
        return;
    }

    // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
    // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
    // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
    //
    // This algorithm is not currently documented on Wikipedia, but there is a clear description here:
    // https://ivanyu.me/blog/2014/10/15/z-algorithm/
    //
    // The code below is adapted from the public domain implementation by the same author here:
    // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
    //
    // Example:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //                    ^
    //   This `3` means that the last three tokens of the context (a b c) also appear here.
    //
    // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
    // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
    // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
    // ensure that the inner while loops only examine each token in the context once as the outer
    // for loop iterates over the context.

    {
        const int last = last_n_repeat - 1;
        int rt = 0, lt = 0;

        for (int k = 1; k < last_n_repeat; ++k) {
            if (k > rt) {
                // If k is outside the current Z-box, do naive computation.
                int n = 0;
                while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) {
                    ++n;
                }
                ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
                if (n > 0) {
                    lt = k;
2006
                    rt = k + n - 1;
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
                }
            } else {
                // If k is inside the current Z-box, consider two cases.

                int p = k - lt; // Pair index.
                int right_part_len = rt - k + 1;

                if (ctx->dry_repeat_count[last - p] < right_part_len) {
                    int n = std::min(ctx->dry_repeat_count[last - p], rep_limit);
                    ctx->dry_repeat_count[last - k] = n;
                } else {
                    int i = rt + 1;
                    while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) {
                        i += 1;
                    }

                    int n = std::min(i - k, rep_limit);
                    ctx->dry_repeat_count[last - k] = n;
                    lt = k;
                    rt = i - 1;
                }
            }
        }
    }

    // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
    // that would be generated by emitting each new token that would extend a sequence.
    //
    // Following the same example as above:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //
    // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
    // c: 3 -> 4 (from `a b c` to `a b c c`)
    // b: 1 -> 2 (from `c` to `c b`)
    // y: 2 -> 3 (from `b c` to `b c y`)

    for (int i = 0; i < last_n_repeat - 1; ++i) {
        int repeat_len = ctx->dry_repeat_count[i];
        if (repeat_len >= ctx->dry_allowed_length) {
            // This token ends a repeat, so the next token would continue one.
            // By convention, the value of `repeat_len` only includes the tokens currently
            // in the context, not the new token that would be added.
            llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i);
            // Track the maximum sequence ending in this token.
            const auto& it = ctx->dry_max_token_repeat.find(token);
            if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) {
                ctx->dry_max_token_repeat[token] = repeat_len;
            }
        }
    }

    // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.

    // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
    // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
    const float FLOAT_MAX_LOG = 88.7228391f;
    int max_exponent = 0;
    if (ctx->dry_base > 1.000001f) {
        max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base);
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id);
        if (af_kvp != ctx->dry_max_token_repeat.end()) {
            // Check all sequence breakers starting with this token
            auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id);
            bool is_single_token_breaker = false;

            for (auto it = range.first; it != range.second; ++it) {
                if (it->second.empty()) {
                    is_single_token_breaker = true;
                    break;
                }
            }

            // Apply penalty only if it's not a single-token sequence breaker
            if (!is_single_token_breaker) {
                int repeat_exp = af_kvp->second - ctx->dry_allowed_length;
                if (max_exponent > 0 && repeat_exp > max_exponent) {
                    repeat_exp = max_exponent;
                }
                float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp);
                cur_p->data[i].logit -= penalty;
            }
        }
    }

    cur_p->sorted = false;
}

static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;
    ctx->last_tokens.clear();
    ctx->dry_repeat_count.clear();
    ctx->dry_max_token_repeat.clear();
}

static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (llama_sampler_dry *) smpl->ctx;

    llama_vocab dummy_vocab;

    // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
2111
    auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137

    // Copy the state, including the processed breakers
    {
        auto * result_ctx = (llama_sampler_dry *) result->ctx;
        result_ctx->dry_processed_breakers = ctx->dry_processed_breakers;
        result_ctx->dry_repeat_count = ctx->dry_repeat_count;
        result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat;
        result_ctx->last_tokens = ctx->last_tokens;
    }

    return result;
}

static void llama_sampler_dry_free(struct llama_sampler * smpl) {
    delete (llama_sampler_dry *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_dry_i = {
    /* .name   = */ llama_sampler_dry_name,
    /* .accept = */ llama_sampler_dry_accept,
    /* .apply  = */ llama_sampler_dry_apply,
    /* .reset  = */ llama_sampler_dry_reset,
    /* .clone  = */ llama_sampler_dry_clone,
    /* .free   = */ llama_sampler_dry_free,
};

2138
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
    int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
    std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
    const int MAX_CHAR_LEN = 40;
    const int MAX_SEQ_LEN = 20;

    const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);

    if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
        // Process sequence breakers
        for (size_t i = 0; i < num_breakers; ++i) {
            if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) {
                LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i);
                continue;
            }

            std::string sequence_break(seq_breakers[i]);
            if (sequence_break.empty()) {
                LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n");
                continue;
            }

            if (sequence_break.size() > MAX_CHAR_LEN) {
                LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN);
                sequence_break.resize(MAX_CHAR_LEN);
            }

2165
            get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
2166
2167
2168
        }
    }

2169
    return llama_sampler_init(
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
        /* .iface = */ &llama_sampler_dry_i,
        /* .ctx   = */ new llama_sampler_dry {
            /* .total_context_size     = */ context_size,
            /* .dry_multiplier         = */ dry_multiplier,
            /* .dry_base               = */ dry_base,
            /* .dry_allowed_length     = */ dry_allowed_length,
            /* .dry_penalty_last_n     = */ dry_penalty_last_n,
            /* .dry_processed_breakers = */ std::move(processed_breakers),
            /* .dry_repeat_count       = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
            /* .dry_max_token_repeat   = */ {},
            /* .last_tokens            = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
2181
2182
        }
    );
2183
2184
2185
2186
2187
}

// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
    llama_vocab dummy_vocab;
2188
    auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
    auto * ctx = (llama_sampler_dry *) result->ctx;

    // Process the token-based sequence breakers
    ctx->dry_processed_breakers.clear();
    if (seq_breakers.empty()) {
        LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n");
    } else {
        for (const auto& breaker : seq_breakers) {
            if (breaker.empty()) {
                LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n");
                continue;
            }
            llama_token head_token = breaker[0];
            std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end());
            ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens));
        }

        if (ctx->dry_processed_breakers.empty()) {
            LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n");
        }
    }

    return result;
}

2214
// logit-bias
2215

2216
2217
struct llama_sampler_logit_bias {
    const int32_t n_vocab;
2218

2219
    const std::vector<llama_logit_bias> logit_bias;
2220

2221
2222
2223
2224
2225
    std::vector<llama_logit_bias> to_search;
};

static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
    return "logit-bias";
2226
2227
}

2228
2229
2230
2231
2232
2233
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;

    if (ctx->logit_bias.empty()) {
        return;
    }
2234

2235
    ctx->to_search.clear();
2236

2237
2238
2239
2240
2241
2242
2243
2244
    // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
    for (const auto & lb : ctx->logit_bias) {
        if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
            cur_p->data[lb.token].logit += lb.bias;
        } else {
            ctx->to_search.push_back(lb);
        }
    }
2245

2246
2247
    if (ctx->to_search.empty()) {
        return;
2248
2249
    }

2250
2251
2252
2253
2254
2255
2256
2257
    // search for the remaining candidates that were not found in the previous step
    for (size_t i = 0; i < cur_p->size; ++i) {
        for (const auto & lb : ctx->to_search) {
            if (cur_p->data[i].id == lb.token) {
                cur_p->data[i].logit += lb.bias;
                break;
            }
        }
2258
    }
2259
}
2260

2261
2262
2263
2264
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
    return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
}
2265

2266
2267
2268
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
    delete (llama_sampler_logit_bias *) smpl->ctx;
}
2269

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
static struct llama_sampler_i llama_sampler_logit_bias_i = {
    /* .name   = */ llama_sampler_logit_bias_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_logit_bias_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_logit_bias_clone,
    /* .free   = */ llama_sampler_logit_bias_free,
};

struct llama_sampler * llama_sampler_init_logit_bias(
                         int32_t   n_vocab,
                         int32_t   n_logit_bias,
          const llama_logit_bias * logit_bias) {
2283
    return llama_sampler_init(
2284
2285
2286
2287
2288
        /* .iface = */ &llama_sampler_logit_bias_i,
        /* .ctx   = */ new llama_sampler_logit_bias {
            /* .n_vocab    = */ n_vocab,
            /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
            /* .to_search  = */ {},
2289
2290
        }
    );
2291
}
2292

2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
// infill

//#define GGML_DEBUG_SAMPLER_INFILL

struct llama_sampler_infill {
    const struct llama_vocab * vocab;

    std::vector<char> buf0;
    std::vector<char> buf1;
};

static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
    return "infill";
}

static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_infill *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

#if defined(GGML_DEBUG_SAMPLER_INFILL)
#define LOG_DBG_CUR LLAMA_LOG_DEBUG
#else
#define LOG_DBG_CUR(...)
#endif

    for (size_t i = 0; i < cur_p->size; ++i) {
        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

    float p_txt_sum = 0.0f;
    float p_eog_sum = 0.0f;

    for (size_t i = 0; i < cur_p->size; ++i) {
2327
        if (ctx->vocab->is_eog(cur_p->data[i].id)) {
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
            p_eog_sum += cur_p->data[i].p;
        } else {
            p_txt_sum += cur_p->data[i].p;
        }
    }

    const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);

    LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);

    if (3*p_eog_sum*cur_p->size > p_txt_sum) {
        LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);

        // keep just the EOG tokens
        const auto size_org = cur_p->size;

        cur_p->size = 0;

        float p_sum = 0.0f;

        for (size_t i = 0; i < size_org; ++i) {
2349
            if (ctx->vocab->is_eog(cur_p->data[i].id)) {
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
                p_sum += cur_p->data[i].p;

                cur_p->data[cur_p->size++] = cur_p->data[i];
            }
        }

        // normalize probs
        for (size_t i = 0; i < cur_p->size; ++i) {
            cur_p->data[i].p /= p_sum;
        }

        return;
    }

    size_t n_combined = 0; GGML_UNUSED(n_combined);

    // combine tokens with common prefix
    for (size_t i0 = 0; i0 < cur_p->size; ++i0) {
        for (size_t i1 = 0; i1 < cur_p->size; ++i1) {
            if (cur_p->data[i0].logit == -INFINITY) {
                break;
            }

            if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) {
                continue;
            }

2377
            int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
2378
2379
            if (len0 < 0) {
                ctx->buf0.resize(len0);
2380
                len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
2381
2382
2383
                assert(len0 > 0);
            }

2384
            int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
2385
2386
            if (len1 < 0) {
                ctx->buf1.resize(len1);
2387
                len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
                assert(len1 > 0);
            }

            // token i0 is a prefix of token i1
            if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) {
                int dst = i0;
                int src = i1;

                // merge into the token with higher probability
                if (cur_p->data[i1].p > cur_p->data[i0].p) {
                    std::swap(dst, src);
                }

                cur_p->data[dst].p += cur_p->data[src].p;
                cur_p->data[src].logit = -INFINITY;
                cur_p->data[src].p     = 0.0f;

                n_combined++;
            }
        }
    }

    size_t n_non_eog = 0;

    size_t size_org = cur_p->size;

    float p_sum = 0.0f;
    float thold = 0.2f;

    cur_p->size = 0;

    LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);

    for (size_t i = 0; i < size_org; ++i) {
2422
        const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442

        if (cur_p->data[i].p < thold && !is_eog) {
            continue;
        }

        if (!is_eog) {
            ++n_non_eog;
        }

        p_sum += cur_p->data[i].p;

        // keep this token
        cur_p->data[cur_p->size++] = cur_p->data[i];
    }

    LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);

    // if no non-EOG tokens are left -> reduce cur_p to single EOT token
    if (n_non_eog == 0) {
        cur_p->size = 1;
2443
        cur_p->data[0].id = ctx->vocab->token_eot();
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
        cur_p->data[0].logit = 1.0f;

        return;
    }

    // normalize probs
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= p_sum;

        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

    size_org = cur_p->size;
    p_sum = 0.0f;
    thold = 1.0/(n_non_eog + 1);

    cur_p->size = 0;

    LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);

    for (size_t i = 0; i < size_org; ++i) {
2465
        const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487

        if (cur_p->data[i].p < thold && !is_eog) {
            continue;
        }

        p_sum += cur_p->data[i].p;

        cur_p->data[cur_p->size++] = cur_p->data[i];
    }

    // normalize probs
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= p_sum;

        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

#undef LOG_DBG_CUR
}

static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
2488
    return llama_sampler_init_infill(ctx->vocab);
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
}

static void llama_sampler_infill_free(struct llama_sampler * smpl) {
    delete (llama_sampler_infill *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_infill_i = {
    /* .name   = */ llama_sampler_infill_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_infill_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_infill_clone,
    /* .free   = */ llama_sampler_infill_free,
};

2504
2505
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
    return llama_sampler_init(
2506
2507
        /* .iface = */ &llama_sampler_infill_i,
        /* .ctx   = */ new llama_sampler_infill {
2508
2509
2510
2511
2512
            /* .vocab = */ vocab,
            /* .buf0  = */ std::vector<char>(512),
            /* .buf1  = */ std::vector<char>(512),
        }
    );
2513
2514
}

2515
// utils
2516

2517
2518
2519
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
    if (smpl->iface == &llama_sampler_dist_i) {
        return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
2520
2521
    }

2522
2523
2524
    if (smpl->iface == &llama_sampler_mirostat_i) {
        return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
    }
2525

2526
2527
2528
    if (smpl->iface == &llama_sampler_mirostat_v2_i) {
        return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
    }
2529

2530
2531
2532
2533
2534
2535
2536
2537
    if (smpl->iface == &llama_sampler_chain_i) {
        const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
        for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
            const uint32_t seed = llama_sampler_get_seed(*it);
            if (seed != LLAMA_DEFAULT_SEED) {
                return seed;
            }
        }
2538
    }
2539
2540

    return LLAMA_DEFAULT_SEED;
2541
2542
}

2543
// perf
2544

2545
2546
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
    struct llama_perf_sampler_data data = {};
2547

2548
2549
    if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
        GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
2550
2551
    }

2552
    const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
2553

2554
2555
    data.t_sample_ms = 1e-3 * ctx->t_sample_us;
    data.n_sample    = std::max(0, ctx->n_sample);
2556

2557
2558
    return data;
}
2559

2560
2561
2562
2563
2564
void llama_perf_sampler_print(const struct llama_sampler * chain) {
    const auto data = llama_perf_sampler(chain);

    LLAMA_LOG_INFO("%s:    sampling time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
2565
2566
}

2567
2568
2569
2570
2571
2572
2573
2574
void llama_perf_sampler_reset(struct llama_sampler * chain) {
    if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
        GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
    }

    auto * ctx = (struct llama_sampler_chain *) chain->ctx;

    ctx->t_sample_us = ctx->n_sample = 0;
2575
}