"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "083629c23564e1a64deaa052f1df5c5d914358d8"
sched.go 28.3 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
package server

import (
	"context"
	"errors"
	"fmt"
	"log/slog"
xuxzh1's avatar
init  
xuxzh1 committed
8
	"os"
mashun1's avatar
v1  
mashun1 committed
9
10
11
	"reflect"
	"runtime"
	"sort"
xuxzh1's avatar
init  
xuxzh1 committed
12
	"strconv"
mashun1's avatar
v1  
mashun1 committed
13
14
15
16
17
	"strings"
	"sync"
	"time"

	"github.com/ollama/ollama/api"
xuxzh1's avatar
init  
xuxzh1 committed
18
	"github.com/ollama/ollama/envconfig"
mashun1's avatar
v1  
mashun1 committed
19
20
21
22
23
24
25
26
27
	"github.com/ollama/ollama/format"
	"github.com/ollama/ollama/gpu"
	"github.com/ollama/ollama/llm"
)

type LlmRequest struct {
	ctx             context.Context //nolint:containedctx
	model           *Model
	opts            api.Options
xuxzh1's avatar
init  
xuxzh1 committed
28
29
	origNumCtx      int // Track the initial ctx request
	sessionDuration *api.Duration
mashun1's avatar
v1  
mashun1 committed
30
31
	successCh       chan *runnerRef
	errCh           chan error
xuxzh1's avatar
init  
xuxzh1 committed
32
	schedAttempts   uint
mashun1's avatar
v1  
mashun1 committed
33
34
35
36
37
38
39
40
41
42
43
}

type Scheduler struct {
	pendingReqCh  chan *LlmRequest
	finishedReqCh chan *LlmRequest
	expiredCh     chan *runnerRef
	unloadedCh    chan interface{}

	loaded   map[string]*runnerRef
	loadedMu sync.Mutex

xuxzh1's avatar
init  
xuxzh1 committed
44
45
46
47
48
	loadFn       func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
	newServerFn  func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
	getGpuFn     func() gpu.GpuInfoList
	getCpuFn     func() gpu.GpuInfoList
	reschedDelay time.Duration
mashun1's avatar
v1  
mashun1 committed
49
50
}

xuxzh1's avatar
init  
xuxzh1 committed
51
52
53
54
55
56
57
58
59
60
61
// Default automatic value for number of models we allow per GPU
// Model will still need to fit in VRAM, but loading many small models
// on a large GPU can cause stalling
var defaultModelsPerGPU = 3

// Default automatic value for parallel setting
// Model will still need to fit in VRAM.  If this setting wont fit
// we'll back off down to 1 to try to get it to fit
var defaultParallel = 4

var ErrMaxQueue = errors.New("server busy, please try again.  maximum pending requests exceeded")
mashun1's avatar
v1  
mashun1 committed
62
63

func InitScheduler(ctx context.Context) *Scheduler {
xuxzh1's avatar
init  
xuxzh1 committed
64
	maxQueue := envconfig.MaxQueue()
mashun1's avatar
v1  
mashun1 committed
65
	sched := &Scheduler{
xuxzh1's avatar
init  
xuxzh1 committed
66
67
68
69
		pendingReqCh:  make(chan *LlmRequest, maxQueue),
		finishedReqCh: make(chan *LlmRequest, maxQueue),
		expiredCh:     make(chan *runnerRef, maxQueue),
		unloadedCh:    make(chan interface{}, maxQueue),
mashun1's avatar
v1  
mashun1 committed
70
71
72
		loaded:        make(map[string]*runnerRef),
		newServerFn:   llm.NewLlamaServer,
		getGpuFn:      gpu.GetGPUInfo,
xuxzh1's avatar
init  
xuxzh1 committed
73
74
		getCpuFn:      gpu.GetCPUInfo,
		reschedDelay:  250 * time.Millisecond,
mashun1's avatar
v1  
mashun1 committed
75
76
77
78
79
80
	}
	sched.loadFn = sched.load
	return sched
}

// context must be canceled to decrement ref count and release the runner
xuxzh1's avatar
init  
xuxzh1 committed
81
func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
mashun1's avatar
v1  
mashun1 committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
	if opts.NumCtx < 4 {
		opts.NumCtx = 4
	}

	req := &LlmRequest{
		ctx:             c,
		model:           model,
		opts:            opts,
		sessionDuration: sessionDuration,
		successCh:       make(chan *runnerRef),
		errCh:           make(chan error, 1),
	}

	select {
	case s.pendingReqCh <- req:
	default:
		req.errCh <- ErrMaxQueue
	}
	return req.successCh, req.errCh
}

// Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
func (s *Scheduler) Run(ctx context.Context) {
	slog.Debug("starting llm scheduler")
	go func() {
		s.processPending(ctx)
	}()

	go func() {
		s.processCompleted(ctx)
	}()
}

func (s *Scheduler) processPending(ctx context.Context) {
	for {
		select {
		case <-ctx.Done():
			slog.Debug("shutting down scheduler pending loop")
			return
		case pending := <-s.pendingReqCh:
			// Block other requests until we get this pending request running
xuxzh1's avatar
init  
xuxzh1 committed
123
124
125
126
			pending.schedAttempts++
			if pending.origNumCtx == 0 {
				pending.origNumCtx = pending.opts.NumCtx
			}
mashun1's avatar
v1  
mashun1 committed
127
128
129
130
131

			if pending.ctx.Err() != nil {
				slog.Debug("pending request cancelled or timed out, skipping scheduling")
				continue
			}
xuxzh1's avatar
init  
xuxzh1 committed
132
133
134
135
136
137
138
			numParallel := int(envconfig.NumParallel())
			// TODO (jmorganca): multimodal models don't support parallel yet
			// see https://github.com/ollama/ollama/issues/4165
			if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
				numParallel = 1
				slog.Warn("multimodal models don't support parallel requests yet")
			}
mashun1's avatar
v1  
mashun1 committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

			for {
				var runnerToExpire *runnerRef
				s.loadedMu.Lock()
				runner := s.loaded[pending.model.ModelPath]
				loadedCount := len(s.loaded)
				s.loadedMu.Unlock()
				if runner != nil {
					if runner.needsReload(ctx, pending) {
						runnerToExpire = runner
					} else {
						// Runner is usable, return it
						pending.useLoadedRunner(runner, s.finishedReqCh)
						break
					}
xuxzh1's avatar
init  
xuxzh1 committed
154
				} else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
mashun1's avatar
v1  
mashun1 committed
155
156
157
158
159
					slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
					runnerToExpire = s.findRunnerToUnload()
				} else {
					// Either no models are loaded or below envconfig.MaxRunners
					// Get a refreshed GPU list
xuxzh1's avatar
init  
xuxzh1 committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
					var gpus gpu.GpuInfoList
					if pending.opts.NumGPU == 0 {
						gpus = s.getCpuFn()
					} else {
						gpus = s.getGpuFn()
					}

					if envconfig.MaxRunners() <= 0 {
						// No user specified MaxRunners, so figure out what automatic setting to use
						// If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
						// if any GPU has unreliable free memory reporting, 1x the number of GPUs
						allReliable := true
						for _, gpu := range gpus {
							if gpu.UnreliableFreeMemory {
								allReliable = false
								break
							}
						}
						if allReliable {
							// HACK
							os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
							slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
						} else {
							// HACK
							os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
							slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
						}
					}
mashun1's avatar
v1  
mashun1 committed
188
189

					// Load model for fitting
xuxzh1's avatar
init  
xuxzh1 committed
190
					ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
mashun1's avatar
v1  
mashun1 committed
191
192
193
194
195
					if err != nil {
						pending.errCh <- err
						break
					}

xuxzh1's avatar
init  
xuxzh1 committed
196
197
198
199
200
201
202
203
					// Evaluate if the model will fit in the available system memory, or if we should unload a model first
					if len(gpus) == 1 && gpus[0].Library == "cpu" {
						// simplifying assumption of defaultParallel when in CPU mode
						if numParallel <= 0 {
							numParallel = defaultParallel
						}

						pending.opts.NumCtx = pending.origNumCtx * numParallel
mashun1's avatar
v1  
mashun1 committed
204

xuxzh1's avatar
init  
xuxzh1 committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
						if loadedCount == 0 {
							slog.Debug("cpu mode with first model, loading")
							s.loadFn(pending, ggml, gpus, numParallel)
							break
						}
						runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
						if runnerToExpire == nil {
							slog.Debug("cpu mode with available system memory or first model, loading")
							s.loadFn(pending, ggml, gpus, numParallel)
							break
						}
						// else we need to expire a runner
					} else if loadedCount == 0 {
						// No models loaded. Load the model but prefer the best fit.
mashun1's avatar
v1  
mashun1 committed
219
						slog.Debug("loading first model", "model", pending.model.ModelPath)
xuxzh1's avatar
init  
xuxzh1 committed
220
						g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
mashun1's avatar
v1  
mashun1 committed
221
222
						if g != nil {
							gpus = g
xuxzh1's avatar
init  
xuxzh1 committed
223
224
225
						} else {
							// Only allow partial loads when this is the first model
							gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
mashun1's avatar
v1  
mashun1 committed
226
						}
xuxzh1's avatar
init  
xuxzh1 committed
227
						s.loadFn(pending, ggml, gpus, numParallel)
mashun1's avatar
v1  
mashun1 committed
228
229
230
						break
					}

xuxzh1's avatar
init  
xuxzh1 committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
					if runnerToExpire == nil {
						// More than one loaded model, so we have to see if the
						// new one fits
						//
						// We want to avoid loading on any GPUs that have other
						// models still loading on them to avoid potential races
						// with VRAM consumption ramping up during load
						availGpus := s.filterGPUsWithoutLoadingModels(gpus)

						// Update free memory from currently loaded models
						s.updateFreeSpace(availGpus)
						fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
						if fitGpus != nil {
							slog.Debug("new model fits with existing models, loading")
							s.loadFn(pending, ggml, fitGpus, numParallel)
							break
						}

						// We couldn't find a set of GPUs to fully load the new
						// model. If no other models are loading (both GPU lists
						// are the same) then we need to unload another model to
						// make room
						if len(availGpus) < len(gpus) {
							// There are other requests pending, and this one
							// needs more time, so put it on the back of the
							// queue so that we might satisfy other pending
							// requests that aren't blocked
							go func() {
								// Process in a go routine to avoid deadlocking
								// the scheduler if our queue is full
								slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
								time.Sleep(s.reschedDelay)
								s.pendingReqCh <- pending
							}()
							break
						}
						runnerToExpire = s.findRunnerToUnload()
mashun1's avatar
v1  
mashun1 committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
					}
				}

				if runnerToExpire == nil {
					// Shouildn't happen
					slog.Error("runner to expire was nil!")
					continue
				}
				// Trigger an expiration to unload once it's done
				runnerToExpire.refMu.Lock()
				slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
				if runnerToExpire.expireTimer != nil {
					runnerToExpire.expireTimer.Stop()
					runnerToExpire.expireTimer = nil
				}
				runnerToExpire.sessionDuration = 0
				if runnerToExpire.refCount <= 0 {
					s.expiredCh <- runnerToExpire
				}
				runnerToExpire.refMu.Unlock()
				// Wait for the unload to happen
				// Note: at this point we're queueing up all incoming requests, even if they were for
				// a different model that's loaded and not scheduled to be removed.
				slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
				select {
				case <-ctx.Done():
					slog.Debug("shutting down scheduler pending loop")
					return
				case <-s.unloadedCh:
					slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
					continue
				}
			}
		case <-s.unloadedCh:
			// An unload request when there are no pending request can be ignored
			slog.Debug("ignoring unload event with no pending requests")
		}
	}
}

func (s *Scheduler) processCompleted(ctx context.Context) {
	// Process completed requests, expired timers, and unloading models
	for {
		select {
		case <-ctx.Done():
			slog.Debug("shutting down scheduler completed loop")
			return
		case finished := <-s.finishedReqCh:
			s.loadedMu.Lock()
			runner := s.loaded[finished.model.ModelPath]
			s.loadedMu.Unlock()
			if runner == nil {
				slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
				continue
			}
			runner.refMu.Lock()
			runner.refCount--
			if runner.refCount <= 0 {
				if runner.sessionDuration <= 0 {
					slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
					if runner.expireTimer != nil {
						runner.expireTimer.Stop()
						runner.expireTimer = nil
					}
					s.expiredCh <- runner
				} else if runner.expireTimer == nil {
					slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
					runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
						slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
						runner.refMu.Lock()
						defer runner.refMu.Unlock()
						if runner.expireTimer != nil {
							runner.expireTimer.Stop()
							runner.expireTimer = nil
						}
						s.expiredCh <- runner
					})
					runner.expiresAt = time.Now().Add(runner.sessionDuration)
				} else {
					slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
					runner.expireTimer.Reset(runner.sessionDuration)
					runner.expiresAt = time.Now().Add(runner.sessionDuration)
				}
			}
			slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
			runner.refMu.Unlock()
		case runner := <-s.expiredCh:
			slog.Debug("runner expired event received", "modelPath", runner.modelPath)
			runner.refMu.Lock()
			if runner.refCount > 0 {
				// Shouldn't happen, but safeguard to ensure no leaked runners
				slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
				go func(runner *runnerRef) {
					// We can't unload yet, but want to as soon as the current request completes
					// So queue up another expired event
					time.Sleep(10 * time.Millisecond)
					s.expiredCh <- runner
				}(runner)
				runner.refMu.Unlock()
				continue
			}

			s.loadedMu.Lock()
			slog.Debug("got lock to unload", "modelPath", runner.modelPath)
			finished := runner.waitForVRAMRecovery()
			runner.unload()
			delete(s.loaded, runner.modelPath)
			s.loadedMu.Unlock()
			slog.Debug("runner released", "modelPath", runner.modelPath)
			runner.refMu.Unlock()

			<-finished
			slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
			s.unloadedCh <- struct{}{}
		}
	}
}

// Complete the pending request and send the runner back to the requester
// Wires up a finished event after the request context is completed
// Updates session duration, and resets expiration timer
func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
	runner.refMu.Lock()
	defer runner.refMu.Unlock()
	runner.refCount++
	if runner.expireTimer != nil {
		runner.expireTimer.Stop()
		runner.expireTimer = nil
	}
xuxzh1's avatar
init  
xuxzh1 committed
397
398
399
	if pending.sessionDuration != nil {
		runner.sessionDuration = pending.sessionDuration.Duration
	}
mashun1's avatar
v1  
mashun1 committed
400
401
402
403
404
405
406
407
	pending.successCh <- runner
	go func() {
		<-pending.ctx.Done()
		slog.Debug("context for request finished")
		finished <- pending
	}()
}

xuxzh1's avatar
init  
xuxzh1 committed
408
409
410
411
412
413
414
415
416
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
	if numParallel < 1 {
		numParallel = 1
	}
	sessionDuration := envconfig.KeepAlive()
	if req.sessionDuration != nil {
		sessionDuration = req.sessionDuration.Duration
	}
	llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
mashun1's avatar
v1  
mashun1 committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
	if err != nil {
		// some older models are not compatible with newer versions of llama.cpp
		// show a generalized compatibility error until there is a better way to
		// check for model compatibility
		if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
			err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
		}
		slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
		req.errCh <- err
		return
	}
	runner := &runnerRef{
		model:           req.model,
		modelPath:       req.model.ModelPath,
		llama:           llama,
		Options:         &req.opts,
xuxzh1's avatar
init  
xuxzh1 committed
433
		sessionDuration: sessionDuration,
mashun1's avatar
v1  
mashun1 committed
434
435
436
437
438
439
		gpus:            gpus,
		estimatedVRAM:   llama.EstimatedVRAM(),
		estimatedTotal:  llama.EstimatedTotal(),
		loading:         true,
		refCount:        1,
	}
xuxzh1's avatar
init  
xuxzh1 committed
440
	runner.numParallel = numParallel
mashun1's avatar
v1  
mashun1 committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
	runner.refMu.Lock()

	s.loadedMu.Lock()
	s.loaded[req.model.ModelPath] = runner
	slog.Info("loaded runners", "count", len(s.loaded))
	s.loadedMu.Unlock()

	go func() {
		defer runner.refMu.Unlock()
		if err = llama.WaitUntilRunning(req.ctx); err != nil {
			slog.Error("error loading llama server", "error", err)
			runner.refCount--
			req.errCh <- err
			slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
			s.expiredCh <- runner
			return
		}
		slog.Debug("finished setting up runner", "model", req.model.ModelPath)
		runner.loading = false
		go func() {
			<-req.ctx.Done()
			slog.Debug("context for request finished")
			s.finishedReqCh <- req
		}()
		req.successCh <- runner
	}()
}

func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
	type predKey struct {
		Library string
		ID      string
	}
	predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
	s.loadedMu.Lock()
	for _, r := range s.loaded {
		r.refMu.Lock()
		if r.llama != nil {
			for _, gpu := range allGpus {
xuxzh1's avatar
init  
xuxzh1 committed
480
				predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
mashun1's avatar
v1  
mashun1 committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
			}
		} else {
			slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
		}
		r.refMu.Unlock()
	}
	s.loadedMu.Unlock()

	// Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
	for i := range allGpus {
		if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
			slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
			if p > allGpus[i].TotalMemory {
				// Shouldn't happen
				slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
				allGpus[i].FreeMemory = 0
			} else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
				// TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
				// and we might unload models we didn't actually need to.  The risk is if some other GPU intensive app is loaded
				// after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
				allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
			}
xuxzh1's avatar
init  
xuxzh1 committed
503
			slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
mashun1's avatar
v1  
mashun1 committed
504
505
506
507
		}
	}
}

xuxzh1's avatar
init  
xuxzh1 committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// While models are loading the VRAM consumption numbers will be indeterminate, so we have
// to avoid scheduling another model on the same GPU(s) that haven't stabilized.
// This routine returns the set of GPUs that do not have an active loading model.
// If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
	ret := append(gpu.GpuInfoList{}, allGpus...)
	s.loadedMu.Lock()
	defer s.loadedMu.Unlock()
	for _, runner := range s.loaded {
		if runner.loading {
			slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
			for _, busyGPU := range runner.gpus {
				for i := range ret {
					if ret[i].ID == busyGPU.ID {
						ret = append(ret[:i], ret[i+1:]...)
						break
					}
				}
			}
		}
	}
	return ret
}

// TODO consolidate sched_types.go
mashun1's avatar
v1  
mashun1 committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
type runnerRef struct {
	refMu sync.Mutex
	// refCond   sync.Cond // Signaled on transition from 1 -> 0 refCount
	refCount uint // prevent unloading if > 0
	// unloading bool      // set to true when we are trying to unload the runner

	llama          llm.LlamaServer
	loading        bool            // True only during initial load, then false forever
	gpus           gpu.GpuInfoList // Recorded at time of provisioning
	estimatedVRAM  uint64
	estimatedTotal uint64

	sessionDuration time.Duration
	expireTimer     *time.Timer
	expiresAt       time.Time

xuxzh1's avatar
init  
xuxzh1 committed
549
550
551
	model       *Model
	modelPath   string
	numParallel int
mashun1's avatar
v1  
mashun1 committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
	*api.Options
}

// The refMu must already be held when calling unload
func (runner *runnerRef) unload() {
	if runner.expireTimer != nil {
		runner.expireTimer.Stop()
		runner.expireTimer = nil
	}
	if runner.llama != nil {
		runner.llama.Close()
	}
	runner.model = nil
	runner.llama = nil
	runner.Options = nil
	runner.gpus = nil
}

func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
	slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
	runner.refMu.Lock()
	defer runner.refMu.Unlock()

	timeout := 10 * time.Second
	if runner.loading {
		timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
	}

	if runner.Options == nil {
		return true
	}

	// Don't reload runner if num_gpu=-1 was provided
	optsExisting := runner.Options.Runner
	optsNew := req.opts.Runner
	if optsNew.NumGPU < 0 {
		optsExisting.NumGPU = -1
		optsNew.NumGPU = -1
	}

xuxzh1's avatar
init  
xuxzh1 committed
592
593
594
	// Normalize the NumCtx for parallelism
	optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel

mashun1's avatar
v1  
mashun1 committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
	ctx, cancel := context.WithTimeout(ctx, timeout)
	defer cancel()
	if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
		!reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
		!reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
		runner.llama.Ping(ctx) != nil {
		return true
	}

	return false
}

// Free memory reporting on GPUs can lag for a while even after the runner
// exits, so we have to keep checking until we see the available memory recover,
// otherwise subsequent model loads will get far less layers loaded or worse
// case, may completely fall back to CPU mode.
// This routine must be called before the runner unloads so it can establish
// a before and after GPU memory allocation.  The returned channel
// will be notified when we're done waiting, or have timed out and should
// proceed anyway
func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
	finished := make(chan interface{}, 1)

xuxzh1's avatar
init  
xuxzh1 committed
618
619
620
621
622
	// CPU or Metal don't need checking, so no waiting required
	// windows can page VRAM, only cuda currently can report accurate used vram usage
	if len(runner.gpus) == 0 ||
		(len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
		(runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
mashun1's avatar
v1  
mashun1 committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
		finished <- struct{}{}
		return finished
	}
	start := time.Now()

	// Establish a baseline before we unload
	gpusBefore := gpu.GetGPUInfo()
	var totalMemoryBefore, freeMemoryBefore uint64
	for _, gpu := range gpusBefore {
		totalMemoryBefore += gpu.TotalMemory
		freeMemoryBefore += gpu.FreeMemory
	}
	go func() {
		expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
		ticker := time.NewTicker(250 * time.Millisecond)
		defer ticker.Stop()
		for {
			<-ticker.C
			if time.Now().After(expiresAt) {
xuxzh1's avatar
init  
xuxzh1 committed
642
				slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
mashun1's avatar
v1  
mashun1 committed
643
644
645
646
647
648
649
650
651
652
653
654
				finished <- struct{}{}
			}

			// Query GPUs, look for free to go back up
			gpusNow := gpu.GetGPUInfo()
			var totalMemoryNow, freeMemoryNow uint64
			for _, gpu := range gpusNow {
				totalMemoryNow += gpu.TotalMemory
				freeMemoryNow += gpu.FreeMemory
			}
			// If we're within ~80% of the estimated memory usage recovered, bail out
			if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
xuxzh1's avatar
init  
xuxzh1 committed
655
				slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
mashun1's avatar
v1  
mashun1 committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
				finished <- struct{}{}
				return
			}
		}
	}()
	return finished
}

type ByDuration []*runnerRef

func (a ByDuration) Len() int      { return len(a) }
func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByDuration) Less(i, j int) bool {
	// uint64 to turn negative time (never unload) to largest
	return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
}

// TODO - future consideration to pick runners based on size
// type BySize []*runnerRef
// func (a BySize) Len() int           { return len(a) }
// func (a BySize) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
// func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }

xuxzh1's avatar
init  
xuxzh1 committed
679
680
// pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
// The list of GPUs returned will always be the same brand (library)
mashun1's avatar
v1  
mashun1 committed
681
// If the model can not be fit fully within the available GPU(s) nil is returned
xuxzh1's avatar
init  
xuxzh1 committed
682
683
684
// If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
mashun1's avatar
v1  
mashun1 committed
685
	var estimatedVRAM uint64
xuxzh1's avatar
init  
xuxzh1 committed
686
687
688
689
690
691
692
693
694

	var numParallelToTry []int
	if *numParallel <= 0 {
		// If no specific parallel setting was provided, try larger then smaller, always end with 1
		numParallelToTry = append(numParallelToTry, defaultParallel, 1)
	} else {
		numParallelToTry = []int{*numParallel}
	}

mashun1's avatar
v1  
mashun1 committed
695
696
697
698
699
	for _, gl := range gpus.ByLibrary() {
		var ok bool
		sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)

		// TODO - potentially sort by performance capability, existing models loaded, etc.
xuxzh1's avatar
init  
xuxzh1 committed
700
		// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
mashun1's avatar
v1  
mashun1 committed
701
702
703
704
		// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
		sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))

		// First attempt to fit the model into a single GPU
xuxzh1's avatar
init  
xuxzh1 committed
705
706
707
708
709
710
711
712
713
714
		for _, p := range numParallelToTry {
			req.opts.NumCtx = req.origNumCtx * p
			if !envconfig.SchedSpread() {
				for _, g := range sgl {
					if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
						slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
						*numParallel = p
						return []gpu.GpuInfo{g}
					}
				}
mashun1's avatar
v1  
mashun1 committed
715
716
717
718
719
720
721
722
			}
		}

		// TODO future refinements
		// - if multiple Libraries, see if any single GPU in any Library will fit
		// - try subsets of GPUs instead of just falling back to 1 or all in a family

		// Now try all the GPUs
xuxzh1's avatar
init  
xuxzh1 committed
723
724
725
726
727
728
729
		for _, p := range numParallelToTry {
			req.opts.NumCtx = req.origNumCtx * p
			if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
				slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
				*numParallel = p
				return sgl
			}
mashun1's avatar
v1  
mashun1 committed
730
731
732
733
734
		}
	}
	return nil
}

xuxzh1's avatar
init  
xuxzh1 committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
	*numParallel = 1
	byLibrary := gpus.ByLibrary()
	if len(byLibrary) <= 1 {
		return gpus
	}
	var bestEstimate uint64
	var bestFit int
	for i, gl := range byLibrary {
		_, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
		if estimatedVRAM > bestEstimate {
			bestEstimate = estimatedVRAM
			bestFit = i
		}
	}
	return byLibrary[bestFit]
}

mashun1's avatar
v1  
mashun1 committed
754
755
756
757
758
759
760
761
// findRunnerToUnload finds a runner to unload to make room for a new model
func (s *Scheduler) findRunnerToUnload() *runnerRef {
	s.loadedMu.Lock()
	runnerList := make([]*runnerRef, 0, len(s.loaded))
	for _, r := range s.loaded {
		runnerList = append(runnerList, r)
	}
	s.loadedMu.Unlock()
xuxzh1's avatar
init  
xuxzh1 committed
762
763
764
765
	if len(runnerList) == 0 {
		slog.Debug("no loaded runner to unload")
		return nil
	}
mashun1's avatar
v1  
mashun1 committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

	// In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
	// e.g., if we have multiple options, will one make room for the request?
	sort.Sort(ByDuration(runnerList))

	// First try to find a runner that's already idle
	for _, runner := range runnerList {
		runner.refMu.Lock()
		rc := runner.refCount
		runner.refMu.Unlock()
		if rc == 0 {
			slog.Debug("found an idle runner to unload")
			return runner
		}
	}
	// None appear idle, just wait for the one with the shortest duration
	slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
	return runnerList[0]
}

func (s *Scheduler) unloadAllRunners() {
	s.loadedMu.Lock()
	defer s.loadedMu.Unlock()
	for model, runner := range s.loaded {
		if runner.llama != nil {
			slog.Debug("shutting down runner", "model", model)
			runner.llama.Close()
		}
	}
}
xuxzh1's avatar
init  
xuxzh1 committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

// If other runners are loaded, make sure the pending request will fit in system memory
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
	slog.Debug("evaluating if CPU model load will fit in available system memory")
	estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
	if estimate.TotalSize <= gpus[0].FreeMemory {
		slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
		return nil
	}

	// TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room

	return s.findRunnerToUnload()
}