memory_test.go 4.27 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
package llm

import (
	"bytes"
	"fmt"
	"os"
	"testing"

	"github.com/stretchr/testify/assert"
	"github.com/stretchr/testify/require"

	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/gpu"
)

func TestEstimateGPULayers(t *testing.T) {
	t.Setenv("OLLAMA_DEBUG", "1")

	modelName := "dummy"
	f, err := os.CreateTemp(t.TempDir(), modelName)
	require.NoError(t, err)
	defer f.Close()
	inputLayerCount := 5

	tensors := []Tensor{
		{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
	}
	assert.Len(t, tensors, inputLayerCount+1)
	err = WriteGGUF(f, KV{
		"general.architecture":          "llama",
		"general.name":                  "name",
		"llama.context_length":          uint32(32),
		"llama.embedding_length":        uint32(4096),
		"llama.block_count":             uint32(inputLayerCount),
		"llama.attention.head_count":    uint32(32),
		"llama.attention.head_count_kv": uint32(32),
		"tokenizer.ggml.tokens":         []string{" "},
		"tokenizer.ggml.scores":         []float32{0},
		"tokenizer.ggml.token_type":     []int32{0},
	}, tensors)
	require.NoError(t, err)

	ggml, err := LoadModel(f.Name(), 0)
	if err != nil {
		t.Fatal(err)
	}

	// Simple CPU scenario
	gpus := []gpu.GpuInfo{
		{
			Library: "cpu",
		},
	}
	projectors := []string{}
	opts := api.DefaultOptions()
	t.Run("cpu", func(t *testing.T) {
		estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
		assert.Equal(t, 0, estimate.Layers)
		assert.Equal(t, uint64(0), estimate.Graph)
	})

	// derived from the dummy ggml file above
	graphPartialOffload := uint64(202377216)
	graphFullOffload := uint64(171968512)
	layerSize := uint64(33554436)
	projectorSize := uint64(0)
	memoryLayerOutput := uint64(4)

	// Dual CUDA scenario with assymetry
	gpuMinimumMemory := uint64(2048)
	gpus = []gpu.GpuInfo{
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
	}
	// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
	for i, s := range []struct {
		layer0, layer1   uint64
		expect0, expect1 uint64
	}{
		{1, 1, 1, 1},
		{2, 1, 2, 1},
		{2, 2, 2, 2},
		{1, 2, 1, 2},
		{3, 3, 3, 3},
		{4, 4, 3, 3},
		{6, 6, 3, 3},
		{0, 3, 0, 3},
	} {
		t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
			gpus[0].FreeMemory = 0
			gpus[1].FreeMemory = 0
			gpus[0].FreeMemory += projectorSize
			if s.layer0 > 0 {
				gpus[0].FreeMemory += memoryLayerOutput
			} else {
				gpus[1].FreeMemory += memoryLayerOutput
			}
			gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
			gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
			gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
			gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
			estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
			assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
			assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
			var layerSums uint64
			for _, b := range estimate.GPUSizes {
				layerSums += b
			}
			if estimate.Layers < inputLayerCount+1 {
				assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			} else {
				assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			}
		})
	}
}