memory.go 10.2 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
package llm

import (
	"fmt"
	"log/slog"
xuxzh1's avatar
init  
xuxzh1 committed
6
7
	"strconv"
	"strings"
mashun1's avatar
v1  
mashun1 committed
8
9
10
11
12
13
14
15
16
17
18
19

	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/format"
	"github.com/ollama/ollama/gpu"
)

// This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
	// Split up the GPUs by type and try them
	var estimatedVRAM uint64
	for _, gpus := range allGpus.ByLibrary() {
		var layerCount int
xuxzh1's avatar
init  
xuxzh1 committed
20
21
		estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
		layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
mashun1's avatar
v1  
mashun1 committed
22
23
24
25
26
27
28
29
30
31
32
33
34
		if opts.NumGPU < 0 {
			if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
				return true, estimatedVRAM
			}
		} else {
			if layerCount > 0 && layerCount >= opts.NumGPU {
				return true, estimatedVRAM
			}
		}
	}
	return false, estimatedVRAM
}

xuxzh1's avatar
init  
xuxzh1 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
type MemoryEstimate struct {
	// How many layers we predict we can load
	Layers int

	// The size of the graph which occupies the main GPU
	Graph uint64

	// How much VRAM will be allocated given the number of layers we predict
	VRAMSize uint64

	// The total size of the model if loaded into VRAM.  If all layers are loaded, VRAMSize == TotalSize
	TotalSize uint64

	// For multi-GPU scenarios, this provides the tensor split parameter
	TensorSplit string

	// For multi-GPU scenarios, this is the size in bytes per GPU
	GPUSizes []uint64

	// internal fields for logging purposes
	inferenceLibrary    string
	layersRequested     int
	layersModel         int
	availableList       []string
	kv                  uint64
	allocationsList     []string
	memoryWeights       uint64
	memoryLayerOutput   uint64
	graphFullOffload    uint64
	graphPartialOffload uint64
}

mashun1's avatar
v1  
mashun1 committed
67
68
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
xuxzh1's avatar
init  
xuxzh1 committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
	// Graph size for a partial offload, applies to all GPUs
	var graphPartialOffload uint64

	// Graph size when all layers are offloaded, applies to all GPUs
	var graphFullOffload uint64

	// Final graph offload once we know full or partial
	var graphOffload uint64

	// Projectors loaded into GPU0 only
	var projectorSize uint64

	// Conditional output size on GPU 0
	var memoryLayerOutput uint64

	// The sizes of a layer
	var layerSize uint64

	// The sum of all the layer sizes (just for logging)
	var memoryWeights uint64
mashun1's avatar
v1  
mashun1 committed
90

xuxzh1's avatar
init  
xuxzh1 committed
91
92
	// True if all the layers are loaded
	var fullyLoaded bool
mashun1's avatar
v1  
mashun1 committed
93

xuxzh1's avatar
init  
xuxzh1 committed
94
95
96
97
98
99
100
101
	// Overflow that didn't fit into the GPU
	var overflow uint64

	availableList := make([]string, len(gpus))
	for i, gpu := range gpus {
		availableList[i] = format.HumanBytes2(gpu.FreeMemory)
	}
	slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", availableList)
mashun1's avatar
v1  
mashun1 committed
102
103

	for _, projector := range projectors {
xuxzh1's avatar
init  
xuxzh1 committed
104
		projectorSize += projectorMemoryRequirements(projector)
mashun1's avatar
v1  
mashun1 committed
105
106
107
108
109
110
111
112

		// multimodal models require at least 2048 context
		opts.NumCtx = max(opts.NumCtx, 2048)
	}

	layers := ggml.Tensors().Layers()
	// add one layer worth of memory as a buffer
	if blk0, ok := layers["blk.0"]; ok {
xuxzh1's avatar
init  
xuxzh1 committed
113
114
115
		layerSize = blk0.size()
	} else {
		slog.Warn("model missing blk.0 layer size")
mashun1's avatar
v1  
mashun1 committed
116
117
	}

xuxzh1's avatar
init  
xuxzh1 committed
118
119
120
121
122
	// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
	var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()

	// KV is proportional to the number of layers
	layerSize += kv / ggml.KV().BlockCount()
mashun1's avatar
v1  
mashun1 committed
123

xuxzh1's avatar
init  
xuxzh1 committed
124
	graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
mashun1's avatar
v1  
mashun1 committed
125
126
127
128
129
130
131
132
133
134
	if graphPartialOffload == 0 {
		graphPartialOffload = ggml.KV().GQA() * kv / 6
	}
	if graphFullOffload == 0 {
		graphFullOffload = graphPartialOffload
	}

	// on metal there's no partial offload overhead
	if gpus[0].Library == "metal" {
		graphPartialOffload = graphFullOffload
xuxzh1's avatar
init  
xuxzh1 committed
135
136
137
	} else if len(gpus) > 1 {
		// multigpu should always use the partial graph size
		graphFullOffload = graphPartialOffload
mashun1's avatar
v1  
mashun1 committed
138
139
140
141
142
143
144
145
146
147
148
	}

	if layer, ok := layers["output_norm"]; ok {
		memoryLayerOutput += layer.size()
	}
	if layer, ok := layers["output"]; ok {
		memoryLayerOutput += layer.size()
	} else if layer, ok := layers["token_embd"]; ok {
		memoryLayerOutput += layer.size()
	}

xuxzh1's avatar
init  
xuxzh1 committed
149
150
	// Output layer handled at the end if we have space
	gpuZeroOverhead := projectorSize
mashun1's avatar
v1  
mashun1 committed
151

xuxzh1's avatar
init  
xuxzh1 committed
152
	// Reduce set of GPUs to only those that have sufficient space to fit overhead and at least one layer
mashun1's avatar
v1  
mashun1 committed
153
	var layerCount int
xuxzh1's avatar
init  
xuxzh1 committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
	layerCounts := make([]int, len(gpus))
	gpuAllocations := make([]uint64, len(gpus))
	type gs struct {
		i int
		g *gpu.GpuInfo
	}
	gpusWithSpace := []gs{}
	for i := range gpus {
		var gzo uint64
		if len(gpusWithSpace) == 0 {
			gzo = gpuZeroOverhead
		}
		// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
		if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
			slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
			continue
		}
		gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
		gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
	}

	var gpuZeroID int
	if len(gpusWithSpace) > 0 {
		gpuZeroID = gpusWithSpace[0].i
		gpuAllocations[gpuZeroID] += gpuZeroOverhead
	}

	// For all the layers, find where they can fit on the GPU(s)
	for i := range int(ggml.KV().BlockCount()) {
		// Some models have inconsistent layer sizes
mashun1's avatar
v1  
mashun1 committed
184
		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
xuxzh1's avatar
init  
xuxzh1 committed
185
186
187
188
			layerSize = blk.size()
			layerSize += kv / ggml.KV().BlockCount()
		}
		memoryWeights += layerSize
mashun1's avatar
v1  
mashun1 committed
189

xuxzh1's avatar
init  
xuxzh1 committed
190
191
192
193
		if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
			// Stop allocating on GPU(s) once we hit the users target NumGPU
			continue
		}
mashun1's avatar
v1  
mashun1 committed
194

xuxzh1's avatar
init  
xuxzh1 committed
195
196
197
198
199
200
201
		// distribute the layers across the GPU(s) that have space
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[i%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
			if g.g.FreeMemory > used+layerSize {
				gpuAllocations[g.i] += layerSize
				layerCounts[g.i]++
mashun1's avatar
v1  
mashun1 committed
202
				layerCount++
xuxzh1's avatar
init  
xuxzh1 committed
203
204
205
				break
			} else {
				gpusWithSpace = append(gpusWithSpace[:i%j], gpusWithSpace[i%j+1:]...)
mashun1's avatar
v1  
mashun1 committed
206
207
208
			}
		}
	}
xuxzh1's avatar
init  
xuxzh1 committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
	if layerCount >= int(ggml.KV().BlockCount()) {
		fullyLoaded = true
	} else {
		for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
			overflow += layerSize
		}
	}

	// Determine if we need to consider output then find where it fits
	if memoryLayerOutput > 0 && (opts.NumGPU < 0 || layerCount < opts.NumGPU) {
		for j := len(gpusWithSpace); j > 0; j-- {
			g := gpusWithSpace[layerCount%j]
			used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
			if g.g.FreeMemory > used+memoryLayerOutput {
				gpuAllocations[g.i] += memoryLayerOutput
				layerCounts[g.i]++
				layerCount++
				break
			}
		}
mashun1's avatar
v1  
mashun1 committed
229

xuxzh1's avatar
init  
xuxzh1 committed
230
231
232
233
		if layerCount < int(ggml.KV().BlockCount())+1 {
			fullyLoaded = false
			overflow += memoryLayerOutput
		}
mashun1's avatar
v1  
mashun1 committed
234
235
	}

xuxzh1's avatar
init  
xuxzh1 committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
	// Add the applicable (full or partial) graph allocations
	for i := range gpus {
		if layerCounts[i] <= 0 {
			continue
		}
		if fullyLoaded {
			gpuAllocations[i] += graphFullOffload
		} else {
			gpuAllocations[i] += graphPartialOffload
		}
	}
	if fullyLoaded {
		graphOffload = graphFullOffload
	} else {
		graphOffload = graphPartialOffload
mashun1's avatar
v1  
mashun1 committed
251
252
	}

xuxzh1's avatar
init  
xuxzh1 committed
253
254
255
256
257
258
	// Summaries for the log
	var memoryRequiredPartial, memoryRequiredTotal uint64
	for i := range gpuAllocations {
		memoryRequiredPartial += gpuAllocations[i]
	}
	memoryRequiredTotal = memoryRequiredPartial + overflow
mashun1's avatar
v1  
mashun1 committed
259

xuxzh1's avatar
init  
xuxzh1 committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
	tensorSplit := ""
	if len(gpus) > 1 {
		splits := make([]string, len(gpus))
		for i, count := range layerCounts {
			splits[i] = strconv.Itoa(count)
		}
		tensorSplit = strings.Join(splits, ",")
	}
	allocationsList := []string{}
	for _, a := range gpuAllocations {
		allocationsList = append(allocationsList, format.HumanBytes2(a))
	}

	estimate := MemoryEstimate{
		TotalSize: memoryRequiredTotal,
		Layers:    0,
		Graph:     0,
		VRAMSize:  0,
		GPUSizes:  []uint64{},

		inferenceLibrary:    gpus[0].Library,
		layersRequested:     opts.NumGPU,
		layersModel:         int(ggml.KV().BlockCount()) + 1,
		availableList:       availableList,
		kv:                  kv,
		allocationsList:     allocationsList,
		memoryWeights:       memoryWeights,
		memoryLayerOutput:   memoryLayerOutput,
		graphFullOffload:    graphFullOffload,
		graphPartialOffload: graphPartialOffload,
	}

	if gpus[0].Library == "cpu" {
		return estimate
	}
	if layerCount == 0 {
		slog.Debug("insufficient VRAM to load any model layers")
		return estimate
	}
	estimate.Layers = layerCount
	estimate.Graph = graphOffload
	estimate.VRAMSize = memoryRequiredPartial
	estimate.TotalSize = memoryRequiredTotal
	estimate.TensorSplit = tensorSplit
	estimate.GPUSizes = gpuAllocations
	return estimate
}

func (m MemoryEstimate) log() {
mashun1's avatar
v1  
mashun1 committed
309
	slog.Info(
xuxzh1's avatar
init  
xuxzh1 committed
310
		"offload to "+m.inferenceLibrary,
mashun1's avatar
v1  
mashun1 committed
311
312
313
		slog.Group(
			"layers",
			// requested number of layers to offload
xuxzh1's avatar
init  
xuxzh1 committed
314
315
316
			"requested", m.layersRequested,
			// The number of layers the model has (including output)
			"model", m.layersModel,
mashun1's avatar
v1  
mashun1 committed
317
			// estimated number of layers that can be offloaded
xuxzh1's avatar
init  
xuxzh1 committed
318
319
320
			"offload", m.Layers,
			// multi-gpu split for tensors
			"split", m.TensorSplit,
mashun1's avatar
v1  
mashun1 committed
321
322
323
		),
		slog.Group(
			"memory",
xuxzh1's avatar
init  
xuxzh1 committed
324
325
			// memory available by GPU for offloading
			"available", m.availableList,
mashun1's avatar
v1  
mashun1 committed
326
327
328
			slog.Group(
				"required",
				// memory required for full offloading
xuxzh1's avatar
init  
xuxzh1 committed
329
				"full", format.HumanBytes2(m.TotalSize),
mashun1's avatar
v1  
mashun1 committed
330
				// memory required to offload layers.estimate layers
xuxzh1's avatar
init  
xuxzh1 committed
331
				"partial", format.HumanBytes2(m.VRAMSize),
mashun1's avatar
v1  
mashun1 committed
332
				// memory of KV cache
xuxzh1's avatar
init  
xuxzh1 committed
333
334
335
				"kv", format.HumanBytes2(m.kv),
				// Allocations across the GPUs
				"allocations", m.allocationsList,
mashun1's avatar
v1  
mashun1 committed
336
337
338
339
			),
			slog.Group(
				"weights",
				// memory of the weights
xuxzh1's avatar
init  
xuxzh1 committed
340
				"total", format.HumanBytes2(m.memoryWeights),
mashun1's avatar
v1  
mashun1 committed
341
				// memory of repeating layers
xuxzh1's avatar
init  
xuxzh1 committed
342
				"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
mashun1's avatar
v1  
mashun1 committed
343
				// memory of non-repeating layers
xuxzh1's avatar
init  
xuxzh1 committed
344
				"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
mashun1's avatar
v1  
mashun1 committed
345
346
347
348
			),
			slog.Group(
				"graph",
				// memory of graph when fully offloaded
xuxzh1's avatar
init  
xuxzh1 committed
349
				"full", format.HumanBytes2(m.graphFullOffload),
mashun1's avatar
v1  
mashun1 committed
350
				// memory of graph when not fully offloaded
xuxzh1's avatar
init  
xuxzh1 committed
351
				"partial", format.HumanBytes2(m.graphPartialOffload),
mashun1's avatar
v1  
mashun1 committed
352
353
354
355
			),
		),
	)
}