test-tokenizer-random.py 21.5 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
# Test libllama tokenizer == AutoTokenizer.
# Brute force random words/text generation.
#
# Sample usage:
#
#   python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#

xuxzh1's avatar
init  
xuxzh1 committed
9
10
from __future__ import annotations

mashun1's avatar
v1  
mashun1 committed
11
12
13
14
15
import time
import logging
import argparse
import subprocess
import random
xuxzh1's avatar
init  
xuxzh1 committed
16
import unicodedata
mashun1's avatar
v1  
mashun1 committed
17

xuxzh1's avatar
init  
xuxzh1 committed
18
19
20
from pathlib import Path
from typing import Any, Iterator, cast
from typing_extensions import Buffer
mashun1's avatar
v1  
mashun1 committed
21
22

import cffi
xuxzh1's avatar
init  
xuxzh1 committed
23
24
from transformers import AutoTokenizer, PreTrainedTokenizer

mashun1's avatar
v1  
mashun1 committed
25

xuxzh1's avatar
init  
xuxzh1 committed
26
logger = logging.getLogger("test-tokenizer-random")
mashun1's avatar
v1  
mashun1 committed
27
28
29
30


class LibLlama:

xuxzh1's avatar
init  
xuxzh1 committed
31
32
33
    DEFAULT_PATH_LLAMA_H = "./include/llama.h"
    DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
    DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so"  # CMakeLists.txt: BUILD_SHARED_LIBS ON
mashun1's avatar
v1  
mashun1 committed
34

xuxzh1's avatar
init  
xuxzh1 committed
35
    def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
mashun1's avatar
v1  
mashun1 committed
36
        path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
xuxzh1's avatar
init  
xuxzh1 committed
37
        path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
mashun1's avatar
v1  
mashun1 committed
38
        path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
xuxzh1's avatar
init  
xuxzh1 committed
39
        (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
mashun1's avatar
v1  
mashun1 committed
40
41
        self.lib.llama_backend_init()

xuxzh1's avatar
init  
xuxzh1 committed
42
43
44
    def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
        cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
        cmd += ["-I" + path for path in path_includes] + [path_llama_h]
mashun1's avatar
v1  
mashun1 committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        res = subprocess.run(cmd, stdout=subprocess.PIPE)
        assert (res.returncode == 0)
        source = res.stdout.decode()
        ffi = cffi.FFI()
        if True:  # workarounds for pycparser
            source = "typedef struct { } __builtin_va_list;" + "\n" + source
            source = source.replace("sizeof (int)",    str(ffi.sizeof("int")))
            source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
            source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
            source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
        ffi.cdef(source, override=True)
        lib = ffi.dlopen(path_libllama)
        return (ffi, lib)

    def model_default_params(self, **kwargs):
        mparams = self.lib.llama_model_default_params()
        for k, v in kwargs.items():
            setattr(mparams, k, v)
        return mparams

    def context_default_params(self, **kwargs):
        cparams = self.lib.llama_context_default_params()
        for k, v in kwargs.items():
            setattr(cparams, k, v)
        return cparams


class LibLlamaModel:

    def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
xuxzh1's avatar
init  
xuxzh1 committed
75
        self.lib: Any = libllama.lib
mashun1's avatar
v1  
mashun1 committed
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.ffi = libllama.ffi
        if isinstance(mparams, dict):
            mparams = libllama.model_default_params(**mparams)
        self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
        if not self.model:
            raise RuntimeError("error: failed to load model '%s'" % path_model)
        if isinstance(cparams, dict):
            cparams = libllama.context_default_params(**cparams)
        self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
        if not self.ctx:
            raise RuntimeError("error: failed to create context for model '%s'" % path_model)
        n_tokens_max = self.lib.llama_n_ctx(self.ctx)
        self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
xuxzh1's avatar
init  
xuxzh1 committed
89
        self.text_buff = self.ffi.new("uint8_t[]", 1024)
mashun1's avatar
v1  
mashun1 committed
90
91
92
93
94
95
96
97
98
99

    def free(self):
        if self.ctx:
            self.lib.llama_free(self.ctx)
        if self.model:
            self.lib.llama_free_model(self.model)
        self.ctx = None
        self.model = None
        self.lib = None

xuxzh1's avatar
init  
xuxzh1 committed
100
101
102
103
104
105
    def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
        encoded_text: bytes = text.encode("utf-8")
        num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
        while num < 0 and len(self.token_ids) < (16 << 20):
            self.token_ids = self.ffi.new("llama_token[]", -2 * num)
            num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
mashun1's avatar
v1  
mashun1 committed
106
107
        return list(self.token_ids[0:num])

xuxzh1's avatar
init  
xuxzh1 committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
        if len(self.token_ids) < len(ids):
            self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
        for i, id in enumerate(ids):
            self.token_ids[i] = id
        num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
        while num < 0 and len(self.text_buff) < (16 << 20):
            self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
            num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
        return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace")  # replace errors with '\uFFFD'


class Tokenizer:

    def encode(self, text: str) -> list[int]:
        raise NotImplementedError

    def decode(self, ids: list[int]) -> str:
        raise NotImplementedError


class TokenizerGroundtruth (Tokenizer):

    def __init__(self, dir_tokenizer: str):
        self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
        # guess BOS and EOS
        ids = self.encode("a")
        assert 1 <= len(ids) <= 3
        add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
        add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
        self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
        self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
        # build vocab
        tokens = list(self.model.get_vocab().values())
        self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
        self.vocab = list(sorted(self.vocab))
        # tokens and lists
        self.special_tokens = list(self.model.all_special_tokens)
        self.added_tokens   = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
        self.bos_token = self.model.bos_token
        self.eos_token = self.model.eos_token

    def encode(self, text: str) -> list[int]:
        return self.model.encode(text, add_special_tokens=True)

    def decode(self, ids: list[int]) -> str:
        return self.model.decode(ids, skip_special_tokens=False)


class TokenizerLlamaCpp (Tokenizer):

    libllama: LibLlama | None = None

    def __init__(self, vocab_file: str):
        if not self.libllama:
            self.libllama = LibLlama()
        self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))

    def encode(self, text: str) -> list[int]:
        return self.model.tokenize(text, add_special=True, parse_special=True)

    def decode(self, ids: list[int]) -> str:
        return self.model.detokenize(ids, remove_special=False, unparse_special=True)

mashun1's avatar
v1  
mashun1 committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

def generator_custom_text() -> Iterator[str]:
    """General tests"""
    yield from [
        "",
        " ",
        "  ",
        "   ",
        "\t",
        "\n",
        "\n\n",
        "\n\n\n",
        "\t\n",
        "Hello world",
        " Hello world",
        "Hello World",
        " Hello World",
        " Hello World!",
        "Hello, world!",
        " Hello, world!",
        " this is 🦙.cpp",
        "w048 7tuijk dsdfhu",
        "нещо на Български",
        "កាន់តែពិសេសអាចខលចេញ",
        "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
        "Hello",
        " Hello",
        "  Hello",
        "   Hello",
        "    Hello",
        "    Hello\n    Hello",
        " (",
        "\n =",
        "' era",
        "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
        "3",
        "33",
        "333",
        "3333",
        "33333",
        "333333",
        "3333333",
        "33333333",
        "333333333",
    ]


def generator_custom_text_edge_cases() -> Iterator[str]:
    """Edge cases found while debugging"""
    yield from [
        '\x1f-a',     # unicode_ranges_control, {0x00001C, 0x00001F}
        '¼-a',        # unicode_ranges_digit, 0x00BC
        '½-a',        # unicode_ranges_digit, 0x00BD
        '¾-a',        # unicode_ranges_digit, 0x00BE
        'a 〇b',      # unicode_ranges_digit, 0x3007
        'Ⅵ-a',       # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
        '\uFEFF//',   # unicode_ranges_control, 0xFEFF (BOM)
        'Cửa Việt',   # llama-3, ignore_merges = true
        '<s>a',       # Phi-3 fail
        '<unk><|endoftext|><s>',  # Phi-3 fail
xuxzh1's avatar
init  
xuxzh1 committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        'a\na',            # bert fail
        '"`',              # falcon
        ' \u2e4e',         # falcon
        '\n\x0b  ',        # falcon
        'a\xa0\xa0\x00b',  # jina-v2-es
        'one <mask>',      # jina-v2-es  <mask> lstrip=true
        'a </s> b',        # rstrip phi-3
        'a <mask> b',      # lstrip jina-v2
        '\xa0aC',          # deepseek
        '\u2029 \uA3E4',   # deepseek-llm
        "a ?",
        'å',               # mpt
        '\U000ac517',      # utf-8 encode error, falcon
        '\U000522f4',      # utf-8 encode error, starcoder
        "<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
        "<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
mashun1's avatar
v1  
mashun1 committed
248
249
250
    ]


xuxzh1's avatar
init  
xuxzh1 committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
    """Brute force check all vocab words"""
    yield from tokenizer.vocab


def generator_ascii_lr_strip() -> Iterator[str]:
    WHITESPACES = ["", " ", "  "]
    CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
    for char1 in CHARACTERS:
        for char2 in CHARACTERS:
            for lstrip in WHITESPACES:
                for rstrip in WHITESPACES:
                    yield lstrip + char1 + char2 + rstrip
                    yield lstrip + char1 + rstrip + char2
                    yield char1 + lstrip + char2 + rstrip


def generator_apostrophe() -> Iterator[str]:
    WHITESPACES = ["", " ", "  "]
    CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
    for char1 in CHARACTERS:
        for char2 in CHARACTERS:
            for lstrip in WHITESPACES:
                for rstrip in WHITESPACES:
                    yield char1 + lstrip + "'" + rstrip + char2
                    yield char1 + char2 + lstrip + "'" + rstrip + "z"
                    yield "a" + lstrip + "'" + rstrip + char1 + char2


def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
    WHITESPACES = ["", " ", "  ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
    all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
    for token in all_tokens:
        for lstrip in WHITESPACES:
            for rstrip in WHITESPACES:
                yield lstrip + token + rstrip
                yield "a" + lstrip + token + rstrip
                yield lstrip + token + rstrip + "z"
                yield "a" + lstrip + token + rstrip + "z"


def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
    separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
    all_tokens  = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
mashun1's avatar
v1  
mashun1 committed
295
296
297
    rand = random.Random()
    for m in range(iterations):
        rand.seed(m)
xuxzh1's avatar
init  
xuxzh1 committed
298
299
        words = rand.choices(all_tokens, k=500)
        if words and words[0] == tokenizer.bos_token:  # skip spam warning of double BOS
mashun1's avatar
v1  
mashun1 committed
300
301
302
303
            while len(words) > 1 and words[1] == tokenizer.bos_token:  # leave one starting BOS
                words.pop(0)
            if tokenizer.add_bos_token:  # drop all starting BOS
                words.pop(0)
xuxzh1's avatar
init  
xuxzh1 committed
304
305
306
307
308
        if words and words[-1] == tokenizer.eos_token:  # skip spam warning of double EOS
            while len(words) > 1 and words[-2] == tokenizer.eos_token:  # leave one trailing EOS
                words.pop(-1)
            if tokenizer.add_bos_token:  # drop all trailing EOS
                words.pop(-1)
mashun1's avatar
v1  
mashun1 committed
309
310
311
312
313
314
        yield "".join(words)


def generator_random_chars(iterations=100) -> Iterator[str]:
    """Brute force random text with simple characters"""

xuxzh1's avatar
init  
xuxzh1 committed
315
    NUM_WORDS = 400
mashun1's avatar
v1  
mashun1 committed
316
317
318
319
320
321
322
323
324
325
326
327
328
    WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
    CHARS = list(sorted(set("""
        ABCDEFGHIJKLMNOPQRSTUVWXYZ
        abcdefghijklmnopqrstuvwxyz
        ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
        áéíóúàèìòùâêîôûäëïöü
        .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
    """)))

    rand = random.Random()
    for m in range(iterations):
        rand.seed(m)
        text = []
xuxzh1's avatar
init  
xuxzh1 committed
329
        for _ in range(NUM_WORDS):
mashun1's avatar
v1  
mashun1 committed
330
331
            k = rand.randint(1, 7)
            word = rand.choices(CHARS, k=k)
xuxzh1's avatar
init  
xuxzh1 committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            word.append(rand.choice(WHITESPACES))
            text.append("".join(word))
        yield "".join(text)


def generator_unicodes() -> Iterator[str]:
    """Iterate unicode characters"""

    MAX_CODEPOINTS = 0x30000  # 0x110000

    def _valid(cpt):
        if cpt >= 0x30000:  # unassigned and supplement­ary
            return False
        # if cpt == 0x2029:  # deepseek-llm
        #    return False
        if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"):  # undefined, surrogates, private
            return False
        return True

    characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]

    yield from characters


def generator_random_unicodes(iterations=100) -> Iterator[str]:
    """Brute force random text with unicode characters"""

    NUM_WORDS = 200
    WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)

    characters = list(generator_unicodes())

    rand = random.Random()
    for m in range(iterations):
        rand.seed(m)
        text = []
        for _ in range(NUM_WORDS):
            k = rand.randint(1, 7)
            word = rand.choices(characters, k=k)
            word.append(rand.choice(WHITESPACES))
            text.append("".join(word))
mashun1's avatar
v1  
mashun1 committed
373
374
375
        yield "".join(text)


xuxzh1's avatar
init  
xuxzh1 committed
376
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
mashun1's avatar
v1  
mashun1 committed
377
378
379
    """Brute force random text with vocab characters"""

    vocab_chars = set()
xuxzh1's avatar
init  
xuxzh1 committed
380
    for word in tokenizer.vocab:
mashun1's avatar
v1  
mashun1 committed
381
382
383
384
385
386
387
388
389
390
        vocab_chars.update(word)
    vocab_chars = list(sorted(vocab_chars))

    rand = random.Random()
    for m in range(iterations):
        rand.seed(m)
        text = rand.choices(vocab_chars, k=1024)
        yield "".join(text)


xuxzh1's avatar
init  
xuxzh1 committed
391
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
mashun1's avatar
v1  
mashun1 committed
392
393
    """Brute force random text from vocab words"""

xuxzh1's avatar
init  
xuxzh1 committed
394
    vocab = [w.strip() for w in tokenizer.vocab]
mashun1's avatar
v1  
mashun1 committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    yield from vocab

    rand = random.Random()
    for m in range(iterations):
        rand.seed(m)
        text = []
        num_words = rand.randint(300, 400)
        for i in range(num_words):
            k = rand.randint(1, 3)
            words = rand.choices(vocab, k=k)
            sep = rand.choice("     \n\r\t")
            text.append("".join(words) + sep)
        yield "".join(text)


xuxzh1's avatar
init  
xuxzh1 committed
410
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
mashun1's avatar
v1  
mashun1 committed
411

xuxzh1's avatar
init  
xuxzh1 committed
412
    def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
mashun1's avatar
v1  
mashun1 committed
413
414
415
416
417
418
419
        for i, (a, b) in enumerate(zip(ids1, ids2)):
            if a != b:
                return i
        if len(ids1) == len(ids2):
            return -1
        return min(len(ids1), len(ids2))

xuxzh1's avatar
init  
xuxzh1 committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    def check_detokenizer(text: str, text1: str, text2: str) -> bool:
        if text1 == text2:  # equal to TokenizerGroundtruth?
            return True
        # equal to source text?
        if tokenizer1.add_bos_token:  # remove BOS
            if text2.startswith(tokenizer1.bos_token):
                text2 = text2[len(tokenizer1.bos_token):]
        if tokenizer1.add_eos_token:  # remove EOS
            if text2.endswith(tokenizer1.eos_token):
                text2 = text2[:-len(tokenizer1.eos_token)]
        return text == text2

    t_encode1 = 0
    t_encode2 = 0
    t_decode1 = 0
    t_decode2 = 0
    t_start = time.perf_counter()
    encode_errors = 0
    decode_errors = 0
    MAX_ERRORS = 10

    logger.info("%s: %s" % (generator.__qualname__, "ini"))
mashun1's avatar
v1  
mashun1 committed
442
    for text in generator:
xuxzh1's avatar
init  
xuxzh1 committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        # print(repr(text), text.encode())
        # print(repr(text), hex(ord(text[0])), text.encode())
        t0 = time.perf_counter()
        ids1 = tokenizer1.encode(text)
        t1 = time.perf_counter()
        ids2 = tokenizer2.encode(text)
        t2 = time.perf_counter()
        text1 = tokenizer1.decode(ids1)
        t3 = time.perf_counter()
        text2 = tokenizer2.decode(ids1)
        t4 = time.perf_counter()
        t_encode1 += t1 - t0
        t_encode2 += t2 - t1
        t_decode1 += t3 - t2
        t_decode2 += t4 - t3
        if encode_errors < MAX_ERRORS and ids1 != ids2:
mashun1's avatar
v1  
mashun1 committed
459
            i = find_first_mismatch(ids1, ids2)
xuxzh1's avatar
init  
xuxzh1 committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
            ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
            ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
            logger.error(" Expected: " + str(ids1))
            logger.error("   Result: " + str(ids2))
            encode_errors += 1
            logger.error(f" {encode_errors=}")
        if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
            i = find_first_mismatch(text1, text2)
            text1 = list(text1[max(0, i - 2) : i + 5 + 1])
            text2 = list(text2[max(0, i - 2) : i + 5 + 1])
            logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
            logger.error("   Result: " + " ".join(hex(ord(x)) for x in text2))
            decode_errors += 1
            logger.error(f" {decode_errors=}")
        if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
            logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
            # raise Exception()
            break

    t_total = time.perf_counter() - t_start
    logger.info(f"{generator.__qualname__}: end,  {t_encode1=:.3f} {t_encode2=:.3f}  {t_decode1=:.3f} {t_decode2=:.3f}  {t_total=:.3f}")


def main(argv: list[str] | None = None):
mashun1's avatar
v1  
mashun1 committed
484
    parser = argparse.ArgumentParser()
xuxzh1's avatar
init  
xuxzh1 committed
485
486
    parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
    parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
mashun1's avatar
v1  
mashun1 committed
487
488
489
    parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
    args = parser.parse_args(argv)

xuxzh1's avatar
init  
xuxzh1 committed
490
491
    logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
    logger.info(f"VOCABFILE: '{args.vocab_file}'")
mashun1's avatar
v1  
mashun1 committed
492

xuxzh1's avatar
init  
xuxzh1 committed
493
494
    tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
    tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
mashun1's avatar
v1  
mashun1 committed
495

xuxzh1's avatar
init  
xuxzh1 committed
496
497
498
499
500
501
502
503
504
505
506
507
    # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
    # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
    compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
    compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
    compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
    compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
    compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
    # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
    # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
    # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
    # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
    # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
mashun1's avatar
v1  
mashun1 committed
508

xuxzh1's avatar
init  
xuxzh1 committed
509
    tokenizer2.model.free()
mashun1's avatar
v1  
mashun1 committed
510
511
512
513
514


if __name__ == "__main__":
    # main()

xuxzh1's avatar
init  
xuxzh1 committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    if True:
        logging.basicConfig(
            level    = logging.DEBUG,
            format   = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
            datefmt  = "%Y-%m-%d %H:%M:%S",
            filename = logger.name + ".log",
            filemode = "a"
        )
    logging.basicConfig(
        level    = logging.DEBUG,
        format   = "%(levelname)s %(message)s",
    )

    path_tokenizers   = Path("./models/tokenizers/")
mashun1's avatar
v1  
mashun1 committed
529
530
531
    path_vocab_format = "./models/ggml-vocab-%s.gguf"

    tokenizers = [
xuxzh1's avatar
init  
xuxzh1 committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        "llama-spm",      # SPM
        "phi-3",          # SPM
        "gemma",          # SPM
        "gemma-2",        # SPM
        "baichuan",       # SPM
        "bert-bge",       # WPM
        "jina-v2-en",     # WPM
        "llama-bpe",      # BPE
        "phi-2",          # BPE
        "deepseek-llm",   # BPE
        "deepseek-coder", # BPE
        "falcon",         # BPE
        "mpt",            # BPE
        "starcoder",      # BPE
        "gpt-2",          # BPE
        "stablelm2",      # BPE
        "refact",         # BPE
        "qwen2",          # BPE
        "olmo",           # BPE
        "jina-v2-es",     # BPE
        "jina-v2-de",     # BPE
        "smaug-bpe",      # BPE
        "poro-chat",      # BPE
        "jina-v2-code",   # BPE
        "viking",         # BPE
        "jais",           # BPE
mashun1's avatar
v1  
mashun1 committed
558
559
    ]

xuxzh1's avatar
init  
xuxzh1 committed
560
    logger.info("=" * 50)
mashun1's avatar
v1  
mashun1 committed
561
    for tokenizer in tokenizers:
xuxzh1's avatar
init  
xuxzh1 committed
562
563
564
565
566
        logger.info("-" * 50)
        logger.info(f"TOKENIZER: '{tokenizer}'")
        vocab_file = Path(path_vocab_format % tokenizer)
        dir_tokenizer = path_tokenizers / tokenizer
        main([str(vocab_file), str(dir_tokenizer), "--verbose"])