lazy.py 8.33 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from __future__ import annotations
from abc import ABC, ABCMeta, abstractmethod

import logging
from typing import Any, Callable

import numpy as np
from numpy.typing import DTypeLike


logger = logging.getLogger(__name__)


class LazyMeta(ABCMeta):

    def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
xuxzh1's avatar
init  
xuxzh1 committed
17
18
        def __getattr__(self, name: str) -> Any:
            meta_attr = getattr(self._meta, name)
mashun1's avatar
v1  
mashun1 committed
19
20
            if callable(meta_attr):
                return type(self)._wrap_fn(
xuxzh1's avatar
init  
xuxzh1 committed
21
                    (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
mashun1's avatar
v1  
mashun1 committed
22
23
24
25
                    use_self=self,
                )
            elif isinstance(meta_attr, self._tensor_type):
                # e.g. self.T with torch.Tensor should still be wrapped
xuxzh1's avatar
init  
xuxzh1 committed
26
                return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
mashun1's avatar
v1  
mashun1 committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            else:
                # no need to wrap non-tensor properties,
                # and they likely don't depend on the actual contents of the tensor
                return meta_attr

        namespace["__getattr__"] = __getattr__

        # need to make a builder for the wrapped wrapper to copy the name,
        # or else it fails with very cryptic error messages,
        # because somehow the same string would end up in every closures
        def mk_wrap(op_name: str, *, meta_noop: bool = False):
            # need to wrap the wrapper to get self
            def wrapped_special_op(self, *args, **kwargs):
                return type(self)._wrap_fn(
                    getattr(type(self)._tensor_type, op_name),
                    meta_noop=meta_noop,
                )(self, *args, **kwargs)
            return wrapped_special_op

        # special methods bypass __getattr__, so they need to be added manually
        # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
        # NOTE: doing this from a metaclass is very convenient
        # TODO: make this even more comprehensive
        for binary_op in (
            "lt", "le", "eq", "ne", "ge", "gt", "not"
            "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
            "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
            "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
            "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
        ):
            attr_name = f"__{binary_op}__"
            # the result of these operators usually has the same shape and dtype as the input,
            # so evaluation on the meta tensor can be skipped.
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)

        for special_op in (
            "getitem", "setitem", "len",
        ):
            attr_name = f"__{special_op}__"
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)

        return super().__new__(cls, name, bases, namespace, **kwargs)


# Tree of lazy tensors
class LazyBase(ABC, metaclass=LazyMeta):
    _tensor_type: type
    _meta: Any
    _data: Any | None
    _args: tuple
xuxzh1's avatar
init  
xuxzh1 committed
77
78
    _kwargs: dict[str, Any]
    _func: Callable[[Any], Any] | None
mashun1's avatar
v1  
mashun1 committed
79

xuxzh1's avatar
init  
xuxzh1 committed
80
    def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
mashun1's avatar
v1  
mashun1 committed
81
82
83
84
        super().__init__()
        self._meta = meta
        self._data = data
        self._args = args
xuxzh1's avatar
init  
xuxzh1 committed
85
        self._kwargs = kwargs if kwargs is not None else {}
mashun1's avatar
v1  
mashun1 committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        self._func = func
        assert self._func is not None or self._data is not None

    def __init_subclass__(cls) -> None:
        if "_tensor_type" not in cls.__dict__:
            raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
        return super().__init_subclass__()

    @staticmethod
    def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
        # TODO: dict and set
        if isinstance(o, (list, tuple)):
            L = []
            for item in o:
                L.append(LazyBase._recurse_apply(item, fn))
            if isinstance(o, tuple):
                L = tuple(L)
            return L
        elif isinstance(o, LazyBase):
            return fn(o)
        else:
            return o

    @classmethod
    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
        def wrapped_fn(*args, **kwargs):
            if kwargs is None:
                kwargs = {}
            args = ((use_self,) if use_self is not None else ()) + args

            meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
xuxzh1's avatar
init  
xuxzh1 committed
117
            # TODO: maybe handle tensors in kwargs too
mashun1's avatar
v1  
mashun1 committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

            if isinstance(meta_noop, bool) and not meta_noop:
                try:
                    res = fn(*meta_args, **kwargs)
                except NotImplementedError:
                    # running some operations on PyTorch's Meta tensors can cause this exception
                    res = None
            else:
                # some operators don't need to actually run on the meta tensors
                assert len(args) > 0
                res = args[0]
                assert isinstance(res, cls)
                res = res._meta
                # allow operations to override the dtype and shape
                if meta_noop is not True:
                    if isinstance(meta_noop, tuple):
                        dtype, shape = meta_noop
                        assert callable(shape)
                        res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
                    else:
                        res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)

            if isinstance(res, cls._tensor_type):
xuxzh1's avatar
init  
xuxzh1 committed
141
                return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
mashun1's avatar
v1  
mashun1 committed
142
143
144
145
146
147
148
149
150
151
152
            else:
                del res  # not needed
                # non-tensor return likely relies on the contents of the args
                # (e.g. the result of torch.equal)
                eager_args = cls.to_eager(args)
                return fn(*eager_args, **kwargs)
        return wrapped_fn

    @classmethod
    def to_eager(cls, t: Any) -> Any:
        def simple_to_eager(_t: LazyBase) -> Any:
xuxzh1's avatar
init  
xuxzh1 committed
153
            if _t._data is not None:
mashun1's avatar
v1  
mashun1 committed
154
155
                return _t._data

xuxzh1's avatar
init  
xuxzh1 committed
156
157
158
159
160
161
162
163
164
            # NOTE: there's a recursion limit in Python (usually 1000)

            assert _t._func is not None
            _t._args = cls._recurse_apply(_t._args, simple_to_eager)
            _t._data = _t._func(*_t._args, **_t._kwargs)
            # sanity check
            assert _t._data is not None
            assert _t._data.dtype == _t._meta.dtype
            assert _t._data.shape == _t._meta.shape
mashun1's avatar
v1  
mashun1 committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

            return _t._data

        # recurse into lists and/or tuples, keeping their structure
        return cls._recurse_apply(t, simple_to_eager)

    @classmethod
    def eager_to_meta(cls, t: Any) -> Any:
        return cls.meta_with_dtype_and_shape(t.dtype, t.shape)

    # must be overridden, meta tensor init is backend-specific
    @classmethod
    @abstractmethod
    def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass

    @classmethod
    def from_eager(cls, t: Any) -> Any:
        if type(t) is cls:
xuxzh1's avatar
init  
xuxzh1 committed
183
            # already lazy
mashun1's avatar
v1  
mashun1 committed
184
185
186
187
188
189
190
191
192
193
194
            return t
        elif isinstance(t, cls._tensor_type):
            return cls(meta=cls.eager_to_meta(t), data=t)
        else:
            return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")


class LazyNumpyTensor(LazyBase):
    _tensor_type = np.ndarray

    @classmethod
xuxzh1's avatar
init  
xuxzh1 committed
195
    def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
mashun1's avatar
v1  
mashun1 committed
196
197
198
199
200
201
202
203
204
        # The initial idea was to use np.nan as the fill value,
        # but non-float types like np.int16 can't use that.
        # So zero it is.
        cheat = np.zeros(1, dtype)
        return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))

    def astype(self, dtype, *args, **kwargs):
        meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
        full_args = (self, dtype,) + args
xuxzh1's avatar
init  
xuxzh1 committed
205
        return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
mashun1's avatar
v1  
mashun1 committed
206
207
208
209
210
211

    def tofile(self, *args, **kwargs):
        eager = LazyNumpyTensor.to_eager(self)
        return eager.tofile(*args, **kwargs)

    # TODO: __array_function__