simple.cpp 4.87 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
#include "common.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <string>
#include <vector>

xuxzh1's avatar
init  
xuxzh1 committed
9
10
static void print_usage(int argc, char ** argv, const gpt_params & params) {
    gpt_params_print_usage(argc, argv, params);
mashun1's avatar
v1  
mashun1 committed
11

xuxzh1's avatar
init  
xuxzh1 committed
12
13
14
15
    LOG_TEE("\nexample usage:\n");
    LOG_TEE("\n    %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
    LOG_TEE("\n");
}
mashun1's avatar
v1  
mashun1 committed
16

xuxzh1's avatar
init  
xuxzh1 committed
17
18
int main(int argc, char ** argv) {
    gpt_params params;
mashun1's avatar
v1  
mashun1 committed
19

xuxzh1's avatar
init  
xuxzh1 committed
20
21
    params.prompt = "Hello my name is";
    params.n_predict = 32;
mashun1's avatar
v1  
mashun1 committed
22

xuxzh1's avatar
init  
xuxzh1 committed
23
24
25
    if (!gpt_params_parse(argc, argv, params)) {
        print_usage(argc, argv, params);
        return 1;
mashun1's avatar
v1  
mashun1 committed
26
27
28
    }

    // total length of the sequence including the prompt
xuxzh1's avatar
init  
xuxzh1 committed
29
    const int n_predict = params.n_predict;
mashun1's avatar
v1  
mashun1 committed
30
31
32
33
34
35
36
37

    // init LLM

    llama_backend_init();
    llama_numa_init(params.numa);

    // initialize the model

xuxzh1's avatar
init  
xuxzh1 committed
38
    llama_model_params model_params = llama_model_params_from_gpt_params(params);
mashun1's avatar
v1  
mashun1 committed
39
40
41
42
43
44
45
46
47
48

    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

    if (model == NULL) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    // initialize the context

xuxzh1's avatar
init  
xuxzh1 committed
49
    llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
mashun1's avatar
v1  
mashun1 committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);

    if (ctx == NULL) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

    // tokenize the prompt

    std::vector<llama_token> tokens_list;
    tokens_list = ::llama_tokenize(ctx, params.prompt, true);

    const int n_ctx    = llama_n_ctx(ctx);
xuxzh1's avatar
init  
xuxzh1 committed
64
    const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
mashun1's avatar
v1  
mashun1 committed
65

xuxzh1's avatar
init  
xuxzh1 committed
66
    LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
mashun1's avatar
v1  
mashun1 committed
67
68
69
70

    // make sure the KV cache is big enough to hold all the prompt and generated tokens
    if (n_kv_req > n_ctx) {
        LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
xuxzh1's avatar
init  
xuxzh1 committed
71
        LOG_TEE("%s:        either reduce n_predict or increase n_ctx\n", __func__);
mashun1's avatar
v1  
mashun1 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        return 1;
    }

    // print the prompt token-by-token

    fprintf(stderr, "\n");

    for (auto id : tokens_list) {
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
    }

    fflush(stderr);

    // create a llama_batch with size 512
    // we use this object to submit token data for decoding

    llama_batch batch = llama_batch_init(512, 0, 1);

    // evaluate the initial prompt
    for (size_t i = 0; i < tokens_list.size(); i++) {
        llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
    }

    // llama_decode will output logits only for the last token of the prompt
    batch.logits[batch.n_tokens - 1] = true;

    if (llama_decode(ctx, batch) != 0) {
        LOG_TEE("%s: llama_decode() failed\n", __func__);
        return 1;
    }

    // main loop

    int n_cur    = batch.n_tokens;
    int n_decode = 0;

    const auto t_main_start = ggml_time_us();

xuxzh1's avatar
init  
xuxzh1 committed
110
    while (n_cur <= n_predict) {
mashun1's avatar
v1  
mashun1 committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        // sample the next token
        {
            auto   n_vocab = llama_n_vocab(model);
            auto * logits  = llama_get_logits_ith(ctx, batch.n_tokens - 1);

            std::vector<llama_token_data> candidates;
            candidates.reserve(n_vocab);

            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
            }

            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

            // sample the most likely token
            const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);

            // is it an end of generation?
xuxzh1's avatar
init  
xuxzh1 committed
129
            if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
mashun1's avatar
v1  
mashun1 committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                LOG_TEE("\n");

                break;
            }

            LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
            fflush(stdout);

            // prepare the next batch
            llama_batch_clear(batch);

            // push this new token for next evaluation
            llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);

            n_decode += 1;
        }

        n_cur += 1;

        // evaluate the current batch with the transformer model
        if (llama_decode(ctx, batch)) {
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
            return 1;
        }
    }

    LOG_TEE("\n");

    const auto t_main_end = ggml_time_us();

    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));

    llama_print_timings(ctx);

    fprintf(stderr, "\n");

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}