"vscode:/vscode.git/clone" did not exist on "19c6106a659c110f172a84cc72b99ad004b4a39d"
imatrix.cpp 22.2 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include "common.h"
#include "llama.h"

#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <sstream>
#include <thread>
#include <mutex>
#include <vector>
#include <fstream>
#include <unordered_map>
#include <algorithm>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

xuxzh1's avatar
init  
xuxzh1 committed
20
21
22
23
24
25
26
27
28
29
30
static void print_usage(int argc, char ** argv, const gpt_params & params) {
    gpt_params_print_usage(argc, argv, params);

    LOG_TEE("\nexample usage:\n");
    LOG_TEE("\n    %s \\\n"
            "       -m model.gguf -f some-text.txt [-o imatrix.dat] [--process-output] [--verbosity 1] \\\n"
            "       [--no-ppl] [--chunk 123] [--output-frequency 10] [--save-frequency 0] \\\n"
            "       [--in-file imatrix-prev-0.dat --in-file imatrix-prev-1.dat ...]\n" , argv[0]);
    LOG_TEE("\n");
}

mashun1's avatar
v1  
mashun1 committed
31
32
33
34
35
36
37
38
39
struct Stats {
    std::vector<float> values;
    std::vector<int> counts;
    int ncall = 0;
};

class IMatrixCollector {
public:
    IMatrixCollector() = default;
xuxzh1's avatar
init  
xuxzh1 committed
40
    void set_params(gpt_params params) { m_params = std::move(params); }
mashun1's avatar
v1  
mashun1 committed
41
    bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data);
xuxzh1's avatar
init  
xuxzh1 committed
42
43
    void save_imatrix(int ncall = -1) const;
    bool load_imatrix(const char * file_name);
mashun1's avatar
v1  
mashun1 committed
44
45
private:
    std::unordered_map<std::string, Stats> m_stats;
xuxzh1's avatar
init  
xuxzh1 committed
46
    gpt_params                             m_params;
mashun1's avatar
v1  
mashun1 committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    std::mutex                             m_mutex;
    int                                    m_last_call = 0;
    std::vector<float>                     m_src1_data;
    std::vector<char>                      m_ids; // the expert ids from ggml_mul_mat_id
};

// remove any prefix and suffixes from the name
// CUDA0#blk.0.attn_k.weight#0 => blk.0.attn_k.weight
static std::string filter_tensor_name(const char * name) {
    std::string wname;
    const char * p = strchr(name, '#');
    if (p != NULL) {
        p = p + 1;
        const char * q = strchr(p, '#');
        if (q != NULL) {
            wname = std::string(p, q - p);
        } else {
            wname = p;
        }
    } else {
        wname = name;
    }
    return wname;
}

bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
    GGML_UNUSED(user_data);

    const struct ggml_tensor * src0 = t->src[0];
    const struct ggml_tensor * src1 = t->src[1];
    std::string wname = filter_tensor_name(src0->name);

    // when ask is true, the scheduler wants to know if we are interested in data from this tensor
    // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection
    if (ask) {
        if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications
        if (t->op != GGML_OP_MUL_MAT) return false;
        // why are small batches ignored (<16 tokens)?
        if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false;
xuxzh1's avatar
init  
xuxzh1 committed
86
        if (!(wname.substr(0, 4) == "blk." || (m_params.process_output && wname == "output.weight"))) return false;
mashun1's avatar
v1  
mashun1 committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        return true;
    }

    std::lock_guard<std::mutex> lock(m_mutex);

    // copy the data from the GPU memory if needed
    const bool is_host = ggml_backend_buffer_is_host(src1->buffer);

    if (!is_host) {
        m_src1_data.resize(ggml_nelements(src1));
        ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1));
    }

    const float * data = is_host ? (const float *) src1->data : m_src1_data.data();

    // this has been adapted to the new format of storing merged experts in a single 3d tensor
    // ref: https://github.com/ggerganov/llama.cpp/pull/6387
    if (t->op == GGML_OP_MUL_MAT_ID) {
        //   ids  -> [n_experts_used, n_tokens]
        //   src1 -> [cols, n_expert_used, n_tokens]
        const ggml_tensor * ids = t->src[2];
        const int n_as = src0->ne[2];
        const int n_ids = ids->ne[0];

        // the top-k selected expert ids are stored in the ids tensor
        // for simplicity, always copy ids to host, because it is small
        // take into account that ids is not contiguous!

        GGML_ASSERT(ids->ne[1] == src1->ne[2]);

        m_ids.resize(ggml_nbytes(ids));
        ggml_backend_tensor_get(ids, m_ids.data(), 0, ggml_nbytes(ids));

        auto & e = m_stats[wname];

        ++e.ncall;

        if (e.values.empty()) {
            e.values.resize(src1->ne[0]*n_as, 0);
            e.counts.resize(src1->ne[0]*n_as, 0);
        }
        else if (e.values.size() != (size_t)src1->ne[0]*n_as) {
            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]*n_as);
xuxzh1's avatar
init  
xuxzh1 committed
130
            exit(1); //GGML_ABORT("fatal error");
mashun1's avatar
v1  
mashun1 committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        }
        if (m_params.verbosity > 1) {
            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[2], (int)src1->type);
        }
        // loop over all possible experts, regardless if they are used or not in the batch
        for (int ex = 0; ex < n_as; ++ex) {
            size_t e_start = ex*src1->ne[0];

            for (int idx = 0; idx < n_ids; ++idx) {
                for (int row = 0; row < (int)src1->ne[2]; ++row) {
                    const int excur = *(const int32_t *) (m_ids.data() + row*ids->nb[1] + idx*ids->nb[0]);

                    GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check

                    if (excur != ex) continue;

                    const int64_t i11 = idx % src1->ne[1];
                    const int64_t i12 = row;
                    const float * x = (const float *)((const char *)data + i11*src1->nb[1] + i12*src1->nb[2]);

                    for (int j = 0; j < (int)src1->ne[0]; ++j) {
                        e.values[e_start + j] += x[j]*x[j];
                        e.counts[e_start + j]++;
xuxzh1's avatar
init  
xuxzh1 committed
154
155
156
157
                        if (!std::isfinite(e.values[e_start + j])) {
                            fprintf(stderr, "%f detected in %s\n", e.values[e_start + j], wname.c_str());
                            exit(1);
                        }
mashun1's avatar
v1  
mashun1 committed
158
159
160
161
162
                    }
                }
            }
            if (e.ncall > m_last_call) {
                m_last_call = e.ncall;
xuxzh1's avatar
init  
xuxzh1 committed
163
                if (m_last_call % m_params.n_out_freq == 0) {
mashun1's avatar
v1  
mashun1 committed
164
165
                    save_imatrix();
                }
xuxzh1's avatar
init  
xuxzh1 committed
166
167
                if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
                    save_imatrix(m_last_call);
mashun1's avatar
v1  
mashun1 committed
168
169
170
171
                }
            }
        }
    } else {
xuxzh1's avatar
init  
xuxzh1 committed
172
        auto & e = m_stats[wname];
mashun1's avatar
v1  
mashun1 committed
173
174
175
176
177
178
        if (e.values.empty()) {
            e.values.resize(src1->ne[0], 0);
            e.counts.resize(src1->ne[0], 0);
        }
        else if (e.values.size() != (size_t)src1->ne[0]) {
            fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", wname.c_str(), (int)e.values.size(), (int)src1->ne[0]);
xuxzh1's avatar
init  
xuxzh1 committed
179
            exit(1); //GGML_ABORT("fatal error");
mashun1's avatar
v1  
mashun1 committed
180
181
182
183
184
185
186
187
188
189
        }
        ++e.ncall;
        if (m_params.verbosity > 1) {
            printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, wname.c_str(), ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type);
        }
        for (int row = 0; row < (int)src1->ne[1]; ++row) {
            const float * x = data + row * src1->ne[0];
            for (int j = 0; j < (int)src1->ne[0]; ++j) {
                e.values[j] += x[j]*x[j];
                e.counts[j]++;
xuxzh1's avatar
init  
xuxzh1 committed
190
191
192
193
                if (!std::isfinite(e.values[j])) {
                    fprintf(stderr, "%f detected in %s\n", e.values[j], wname.c_str());
                    exit(1);
                }
mashun1's avatar
v1  
mashun1 committed
194
195
196
197
            }
        }
        if (e.ncall > m_last_call) {
            m_last_call = e.ncall;
xuxzh1's avatar
init  
xuxzh1 committed
198
            if (m_last_call % m_params.n_out_freq == 0) {
mashun1's avatar
v1  
mashun1 committed
199
200
                save_imatrix();
            }
xuxzh1's avatar
init  
xuxzh1 committed
201
202
            if (m_params.n_save_freq > 0 && m_last_call%m_params.n_save_freq == 0) {
                save_imatrix(m_last_call);
mashun1's avatar
v1  
mashun1 committed
203
204
205
206
207
208
209
            }
        }
    }

    return true;
}

xuxzh1's avatar
init  
xuxzh1 committed
210
211
212
213
214
void IMatrixCollector::save_imatrix(int ncall) const {
    auto fname = m_params.out_file;
    if (fname.empty()) {
        fname = "imatrix.dat";
    }
mashun1's avatar
v1  
mashun1 committed
215

xuxzh1's avatar
init  
xuxzh1 committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    if (ncall > 0) {
        fname += ".at_";
        fname += std::to_string(ncall);
    }

    // avoid writing imatrix entries that do not have full data
    // this can happen with MoE models where some of the experts end up not being exercised by the provided training data

    int n_entries = 0;
    std::vector<std::string> to_store;

    bool is_first = true; // for printing
    for (const auto & kv : m_stats) {
        const int n_all = kv.second.counts.size();

        if (n_all == 0) {
            continue;
        }

        int n_zeros = 0;
        for (const int c : kv.second.counts) {
            if (c == 0) {
                n_zeros++;
            }
        }

        if (n_zeros != 0 && is_first) {
            fprintf(stderr, "\n");
            is_first = false;
        }

        if (n_zeros == n_all) {
            fprintf(stderr, "%s: entry '%40s' has no data - skipping\n", __func__, kv.first.c_str());
            continue;
        }

        if (n_zeros > 0) {
            fprintf(stderr, "%s: entry '%40s' has partial data (%.2f%%) - skipping\n", __func__, kv.first.c_str(), 100.0f * (n_all - n_zeros) / n_all);
            continue;
        }

        n_entries++;
        to_store.push_back(kv.first);
    }

    if (to_store.size() < m_stats.size()) {
        fprintf(stderr, "%s: warning: storing only %zu out of %zu entries\n", __func__, to_store.size(), m_stats.size());
    }
mashun1's avatar
v1  
mashun1 committed
264
265
266

    std::ofstream out(fname, std::ios::binary);
    out.write((const char *) &n_entries, sizeof(n_entries));
xuxzh1's avatar
init  
xuxzh1 committed
267
268
269
    for (const auto & name : to_store) {
        const auto & stat = m_stats.at(name);
        int len = name.size();
mashun1's avatar
v1  
mashun1 committed
270
        out.write((const char *) &len, sizeof(len));
xuxzh1's avatar
init  
xuxzh1 committed
271
272
273
        out.write(name.c_str(), len);
        out.write((const char *) &stat.ncall, sizeof(stat.ncall));
        int nval = stat.values.size();
mashun1's avatar
v1  
mashun1 committed
274
275
276
277
        out.write((const char *) &nval, sizeof(nval));
        if (nval > 0) {
            std::vector<float> tmp(nval);
            for (int i = 0; i < nval; i++) {
xuxzh1's avatar
init  
xuxzh1 committed
278
                tmp[i] = (stat.values[i] / static_cast<float>(stat.counts[i])) * static_cast<float>(stat.ncall);
mashun1's avatar
v1  
mashun1 committed
279
280
281
282
283
284
285
286
            }
            out.write((const char*)tmp.data(), nval*sizeof(float));
        }
    }

    // Write the number of call the matrix was computed with
    out.write((const char *) &m_last_call, sizeof(m_last_call));

xuxzh1's avatar
init  
xuxzh1 committed
287
288
289
290
291
292
    // Write the input filename at the end of the file to later on specify it in quantize
    {
        int len = m_params.prompt_file.size();
        out.write((const char *) &len, sizeof(len));
        out.write(m_params.prompt_file.c_str(), len);
    }
mashun1's avatar
v1  
mashun1 committed
293
294

    if (m_params.verbosity > 0) {
xuxzh1's avatar
init  
xuxzh1 committed
295
        fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n", __func__, m_last_call, fname.c_str());
mashun1's avatar
v1  
mashun1 committed
296
297
298
    }
}

xuxzh1's avatar
init  
xuxzh1 committed
299
300
bool IMatrixCollector::load_imatrix(const char * fname) {
    std::ifstream in(fname, std::ios::binary);
mashun1's avatar
v1  
mashun1 committed
301
    if (!in) {
xuxzh1's avatar
init  
xuxzh1 committed
302
        printf("%s: failed to open %s\n",__func__, fname);
mashun1's avatar
v1  
mashun1 committed
303
304
305
306
307
        return false;
    }
    int n_entries;
    in.read((char*)&n_entries, sizeof(n_entries));
    if (in.fail() || n_entries < 1) {
xuxzh1's avatar
init  
xuxzh1 committed
308
        printf("%s: no data in file %s\n", __func__, fname);
mashun1's avatar
v1  
mashun1 committed
309
310
311
312
313
314
315
        return false;
    }
    for (int i = 0; i < n_entries; ++i) {
        int len; in.read((char *)&len, sizeof(len));
        std::vector<char> name_as_vec(len+1);
        in.read((char *)name_as_vec.data(), len);
        if (in.fail()) {
xuxzh1's avatar
init  
xuxzh1 committed
316
            printf("%s: failed reading name for entry %d from %s\n",__func__,i+1, fname);
mashun1's avatar
v1  
mashun1 committed
317
318
319
320
            return false;
        }
        name_as_vec[len] = 0;
        std::string name{name_as_vec.data()};
xuxzh1's avatar
init  
xuxzh1 committed
321
        auto & e = m_stats[std::move(name)];
mashun1's avatar
v1  
mashun1 committed
322
323
324
325
326
327
        int ncall;
        in.read((char*)&ncall, sizeof(ncall));
        int nval;
        in.read((char *)&nval, sizeof(nval));
        if (in.fail() || nval < 1) {
            printf("%s: failed reading number of values for entry %d\n",__func__,i);
xuxzh1's avatar
init  
xuxzh1 committed
328
            m_stats = {};
mashun1's avatar
v1  
mashun1 committed
329
330
331
332
333
334
335
336
337
338
339
340
            return false;
        }

        if (e.values.empty()) {
            e.values.resize(nval, 0);
            e.counts.resize(nval, 0);
        }

        std::vector<float> tmp(nval);
        in.read((char*)tmp.data(), nval*sizeof(float));
        if (in.fail()) {
            printf("%s: failed reading data for entry %d\n",__func__,i);
xuxzh1's avatar
init  
xuxzh1 committed
341
            m_stats = {};
mashun1's avatar
v1  
mashun1 committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            return false;
        }

        // Recreate the state as expected by save_imatrix(), and corerct for weighted sum.
        for (int i = 0; i < nval; i++) {
            e.values[i] += tmp[i];
            e.counts[i] += ncall;
        }
        e.ncall += ncall;

    }
    return true;
}

static IMatrixCollector g_collector;

static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) {
    return g_collector.collect_imatrix(t, ask, user_data);
}


struct results_log_softmax {
    double log_softmax;
    float  logit;
    float  prob;
};

xuxzh1's avatar
init  
xuxzh1 committed
369
static std::vector<float> softmax(const std::vector<float> & logits) {
mashun1's avatar
v1  
mashun1 committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) {
        max_logit = std::max(max_logit, v);
    }
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) {
        probs[i] /= sum_exp;
    }
    return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
    float max_logit = logits[0];
    for (int i = 1; i < n_vocab; ++i) {
        max_logit = std::max(max_logit, logits[i]);
    }
    double sum_exp = 0.0;
    for (int i = 0; i < n_vocab; ++i) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
}

static void process_logits(
    int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
xuxzh1's avatar
init  
xuxzh1 committed
403
    double & nll, double & nll2, float * logit_history, float * prob_history) {
mashun1's avatar
v1  
mashun1 committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    std::mutex mutex;
    int counter = 0;
    auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
        double local_nll  = 0;
        double local_nll2 = 0;
        while (true) {
            std::unique_lock<std::mutex> lock(mutex);
            int i = counter++;
            if (i >= n_token) {
                nll += local_nll; nll2 += local_nll2;
                break;
            }
            lock.unlock();
            const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
            const double v = -results.log_softmax;
            local_nll += v;
            local_nll2 += v*v;

            logit_history[i] = results.logit;
            prob_history[i]  = results.prob;
        }
    };
    for (auto & w : workers) {
        w = std::thread(compute);
    }
    compute();
    for (auto & w : workers) {
        w.join();
    }
}

xuxzh1's avatar
init  
xuxzh1 committed
435
static bool compute_imatrix(llama_context * ctx, const gpt_params & params) {
mashun1's avatar
v1  
mashun1 committed
436
437
438
439
440
441
442
443
444
445
446
447
    const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
    GGML_ASSERT(llama_add_eos_token(llama_get_model(ctx)) != 1);
    const int n_ctx = llama_n_ctx(ctx);

    auto tim1 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenizing the input ..\n", __func__);

    std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, true);

    auto tim2 = std::chrono::high_resolution_clock::now();
    fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());

xuxzh1's avatar
init  
xuxzh1 committed
448
449
450
    if (params.i_chunk > 0) {
        if (size_t((params.i_chunk + 2)*n_ctx) >= tokens.size()) {
            fprintf(stderr, "%s: there will be not enough tokens left after removing %d chunks\n", __func__, params.i_chunk);
mashun1's avatar
v1  
mashun1 committed
451
452
            return false;
        }
xuxzh1's avatar
init  
xuxzh1 committed
453
454
        fprintf(stderr, "%s: removing initial %d chunks (%d tokens)\n", __func__, params.i_chunk, params.i_chunk*n_ctx);
        tokens.erase(tokens.begin(), tokens.begin() + params.i_chunk*n_ctx);
mashun1's avatar
v1  
mashun1 committed
455
456
457
458
459
460
461
462
463
464
465
466
    }

    if (int(tokens.size()) < 2*n_ctx) {
        fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx,
                n_ctx);
        fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
        return false;
    }

    std::vector<float> logit_history;
    std::vector<float> prob_history;

xuxzh1's avatar
init  
xuxzh1 committed
467
    if (params.compute_ppl) {
mashun1's avatar
v1  
mashun1 committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        logit_history.resize(tokens.size());
        prob_history.resize(tokens.size());
    }

    const int n_chunk_max = tokens.size() / n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(llama_get_model(ctx));
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;
    double nll2 = 0.0;

    fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch);

    std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);

    const int num_batches = (n_ctx + n_batch - 1) / n_batch;

    std::vector<float> logits;
xuxzh1's avatar
init  
xuxzh1 committed
489
    if (params.compute_ppl && num_batches > 1) {
mashun1's avatar
v1  
mashun1 committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
        logits.reserve((size_t)n_ctx * n_vocab);
    }

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * n_ctx;
        const int end   = start + n_ctx;

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        // clear the KV cache
        llama_kv_cache_clear(ctx);

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (add_bos && j == 0) {
                tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
            }

            // TODO: use batch.logits to save computations instead of relying on logits_all == true
            if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
                fprintf(stderr, "%s : failed to eval\n", __func__);
                return false;
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

xuxzh1's avatar
init  
xuxzh1 committed
525
            if (params.compute_ppl && num_batches > 1) {
mashun1's avatar
v1  
mashun1 committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
                const auto * batch_logits = llama_get_logits(ctx);
                logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
            }
        }

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
        }

xuxzh1's avatar
init  
xuxzh1 committed
544
        if (params.compute_ppl) {
mashun1's avatar
v1  
mashun1 committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
            const int first = n_ctx/2;
            const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
            process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
                    workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
            count += n_ctx - first - 1;

            printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
            fflush(stdout);

            logits.clear();
        }
    }
    printf("\n");

xuxzh1's avatar
init  
xuxzh1 committed
559
    if (params.compute_ppl) {
mashun1's avatar
v1  
mashun1 committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        nll2 /= count;
        nll /= count;
        const double ppl = exp(nll);
        nll2 -= nll * nll;
        if (nll2 > 0) {
            nll2 = sqrt(nll2/(count-1));
            printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
        } else {
            printf("Unexpected negative standard deviation of log(prob)\n");
        }
    }

    return true;
}

int main(int argc, char ** argv) {
    gpt_params params;

xuxzh1's avatar
init  
xuxzh1 committed
578
    params.n_ctx = 512;
mashun1's avatar
v1  
mashun1 committed
579
    params.logits_all = true;
xuxzh1's avatar
init  
xuxzh1 committed
580
    params.verbosity = 1;
mashun1's avatar
v1  
mashun1 committed
581

xuxzh1's avatar
init  
xuxzh1 committed
582
583
584
    if (!gpt_params_parse(argc, argv, params)) {
        print_usage(argc, argv, params);
        return 1;
mashun1's avatar
v1  
mashun1 committed
585
586
    }

xuxzh1's avatar
init  
xuxzh1 committed
587
    params.n_batch = std::min(params.n_batch, params.n_ctx);
mashun1's avatar
v1  
mashun1 committed
588

xuxzh1's avatar
init  
xuxzh1 committed
589
    g_collector.set_params(params);
mashun1's avatar
v1  
mashun1 committed
590

xuxzh1's avatar
init  
xuxzh1 committed
591
592
593
594
    for (const auto & in_file : params.in_files) {
        printf("%s : loading imatrix from '%s'\n", __func__, in_file.c_str());
        if (!g_collector.load_imatrix(in_file.c_str())) {
            fprintf(stderr, "%s : failed to load %s\n", __func__, in_file.c_str());
mashun1's avatar
v1  
mashun1 committed
595
596
597
598
            return 1;
        }
    }

xuxzh1's avatar
init  
xuxzh1 committed
599
600
601
    if (params.in_files.size() > 1) {
        printf("%s : saving combined imatrix to '%s'\n", __func__, params.out_file.c_str());
        g_collector.save_imatrix();
mashun1's avatar
v1  
mashun1 committed
602
603
604
605
606
607
608
609
610
611
612
613
    }

    llama_backend_init();
    llama_numa_init(params.numa);

    // pass the callback to the backend scheduler
    // it will be executed for each node during the graph computation
    params.cb_eval = ik_collect_imatrix;
    params.cb_eval_user_data = NULL;
    params.warmup = false;

    // init
xuxzh1's avatar
init  
xuxzh1 committed
614
615
616
617
    llama_init_result llama_init = llama_init_from_gpt_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;
mashun1's avatar
v1  
mashun1 committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    if (model == nullptr || ctx == nullptr) {
        fprintf(stderr, "%s : failed to init\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    if (params.n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, params.n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
    }

xuxzh1's avatar
init  
xuxzh1 committed
635
    if (!compute_imatrix(ctx, params)) {
mashun1's avatar
v1  
mashun1 committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        return 1;
    }

    g_collector.save_imatrix();

    llama_print_timings(ctx);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}