batched.cpp 7.81 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
#include "common.h"
#include "llama.h"

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>

xuxzh1's avatar
init  
xuxzh1 committed
10
11
static void print_usage(int argc, char ** argv, const gpt_params & params) {
    gpt_params_print_usage(argc, argv, params);
mashun1's avatar
v1  
mashun1 committed
12

xuxzh1's avatar
init  
xuxzh1 committed
13
14
15
16
    LOG_TEE("\nexample usage:\n");
    LOG_TEE("\n    %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
    LOG_TEE("\n");
}
mashun1's avatar
v1  
mashun1 committed
17

xuxzh1's avatar
init  
xuxzh1 committed
18
19
int main(int argc, char ** argv) {
    gpt_params params;
mashun1's avatar
v1  
mashun1 committed
20

xuxzh1's avatar
init  
xuxzh1 committed
21
22
    params.prompt = "Hello my name is";
    params.n_predict = 32;
mashun1's avatar
v1  
mashun1 committed
23

xuxzh1's avatar
init  
xuxzh1 committed
24
25
26
    if (!gpt_params_parse(argc, argv, params)) {
        print_usage(argc, argv, params);
        return 1;
mashun1's avatar
v1  
mashun1 committed
27
28
29
    }


xuxzh1's avatar
init  
xuxzh1 committed
30
31
    // number of parallel batches
    int n_parallel = params.n_parallel;
mashun1's avatar
v1  
mashun1 committed
32

xuxzh1's avatar
init  
xuxzh1 committed
33
34
    // total length of the sequences including the prompt
    int n_predict = params.n_predict;
mashun1's avatar
v1  
mashun1 committed
35
36
37
38
39
40
41
42

    // init LLM

    llama_backend_init();
    llama_numa_init(params.numa);

    // initialize the model

xuxzh1's avatar
init  
xuxzh1 committed
43
    llama_model_params model_params = llama_model_params_from_gpt_params(params);
mashun1's avatar
v1  
mashun1 committed
44
45
46
47
48
49
50
51
52
53
54
55
56

    llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);

    if (model == NULL) {
        fprintf(stderr , "%s: error: unable to load model\n" , __func__);
        return 1;
    }

    // tokenize the prompt

    std::vector<llama_token> tokens_list;
    tokens_list = ::llama_tokenize(model, params.prompt, true);

xuxzh1's avatar
init  
xuxzh1 committed
57
    const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
mashun1's avatar
v1  
mashun1 committed
58
59
60

    // initialize the context

xuxzh1's avatar
init  
xuxzh1 committed
61
    llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
mashun1's avatar
v1  
mashun1 committed
62
63

    ctx_params.n_ctx   = n_kv_req;
xuxzh1's avatar
init  
xuxzh1 committed
64
    ctx_params.n_batch = std::max(n_predict, n_parallel);
mashun1's avatar
v1  
mashun1 committed
65
66
67
68
69
70
71
72

    llama_context * ctx = llama_new_context_with_model(model, ctx_params);

    if (ctx == NULL) {
        fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
        return 1;
    }

xuxzh1's avatar
init  
xuxzh1 committed
73
    const int n_ctx = llama_n_ctx(ctx);
mashun1's avatar
v1  
mashun1 committed
74

xuxzh1's avatar
init  
xuxzh1 committed
75
    LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
mashun1's avatar
v1  
mashun1 committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    // make sure the KV cache is big enough to hold all the prompt and generated tokens
    if (n_kv_req > n_ctx) {
        LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__,  n_kv_req);
        LOG_TEE("%s:        either reduce n_parallel or increase n_ctx\n", __func__);
        return 1;
    }

    // print the prompt token-by-token

    fprintf(stderr, "\n");

    for (auto id : tokens_list) {
        fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
    }

    fflush(stderr);

    // create a llama_batch
    // we use this object to submit token data for decoding
xuxzh1's avatar
init  
xuxzh1 committed
96
97
98
99
100
101
    llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);

    std::vector<llama_seq_id> seq_ids(n_parallel, 0);
    for (int32_t i = 0; i < n_parallel; ++i) {
        seq_ids[i] = i;
    }
mashun1's avatar
v1  
mashun1 committed
102
103
104

    // evaluate the initial prompt
    for (size_t i = 0; i < tokens_list.size(); ++i) {
xuxzh1's avatar
init  
xuxzh1 committed
105
        llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
mashun1's avatar
v1  
mashun1 committed
106
107
108
    }
    GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());

xuxzh1's avatar
init  
xuxzh1 committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    if (llama_model_has_encoder(model)) {
        if (llama_encode(ctx, batch)) {
            LOG_TEE("%s : failed to eval\n", __func__);
            return 1;
        }

        llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
        if (decoder_start_token_id == -1) {
            decoder_start_token_id = llama_token_bos(model);
        }

        llama_batch_clear(batch);
        llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
    }

mashun1's avatar
v1  
mashun1 committed
124
125
126
127
128
129
130
131
    // llama_decode will output logits only for the last token of the prompt
    batch.logits[batch.n_tokens - 1] = true;

    if (llama_decode(ctx, batch) != 0) {
        LOG_TEE("%s: llama_decode() failed\n", __func__);
        return 1;
    }

xuxzh1's avatar
init  
xuxzh1 committed
132
133
134
135
136
    //// assign the system KV cache to all parallel sequences
    //// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
    //for (int32_t i = 1; i < n_parallel; ++i) {
    //    llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
    //}
mashun1's avatar
v1  
mashun1 committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    if (n_parallel > 1) {
        LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
    }

    // main loop

    // we will store the parallel decoded sequences in this vector
    std::vector<std::string> streams(n_parallel);

    // remember the batch index of the last token for each parallel sequence
    // we need this to determine which logits to sample from
    std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);

    int n_cur    = batch.n_tokens;
    int n_decode = 0;

    const auto t_main_start = ggml_time_us();

xuxzh1's avatar
init  
xuxzh1 committed
156
    while (n_cur <= n_predict) {
mashun1's avatar
v1  
mashun1 committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        // prepare the next batch
        llama_batch_clear(batch);

        // sample the next token for each parallel sequence / stream
        for (int32_t i = 0; i < n_parallel; ++i) {
            if (i_batch[i] < 0) {
                // the stream has already finished
                continue;
            }

            auto   n_vocab = llama_n_vocab(model);
            auto * logits  = llama_get_logits_ith(ctx, i_batch[i]);

            std::vector<llama_token_data> candidates;
            candidates.reserve(n_vocab);

            for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
                candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
            }

            llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

            const int   top_k = 40;
            const float top_p = 0.9f;
            const float temp  = 0.4f;

            llama_sample_top_k(ctx, &candidates_p, top_k, 1);
            llama_sample_top_p(ctx, &candidates_p, top_p, 1);
            llama_sample_temp (ctx, &candidates_p, temp);

            const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);

            //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);

            // is it an end of generation? -> mark the stream as finished
xuxzh1's avatar
init  
xuxzh1 committed
192
            if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
mashun1's avatar
v1  
mashun1 committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                i_batch[i] = -1;
                LOG_TEE("\n");
                if (n_parallel > 1) {
                    LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
                }

                continue;
            }

            // if there is only one stream, we print immediately to stdout
            if (n_parallel == 1) {
                LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
                fflush(stdout);
            }

            streams[i] += llama_token_to_piece(ctx, new_token_id);

            i_batch[i] = batch.n_tokens;

            // push this new token for next evaluation
            llama_batch_add(batch, new_token_id, n_cur, { i }, true);

            n_decode += 1;
        }

        // all streams are finished
        if (batch.n_tokens == 0) {
            break;
        }

        n_cur += 1;

        // evaluate the current batch with the transformer model
        if (llama_decode(ctx, batch)) {
            fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
            return 1;
        }
    }

    LOG_TEE("\n");

    if (n_parallel > 1) {
        LOG_TEE("\n");

        for (int32_t i = 0; i < n_parallel; ++i) {
            LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
        }
    }

    const auto t_main_end = ggml_time_us();

    LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
            __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));

    llama_print_timings(ctx);

    fprintf(stderr, "\n");

    llama_batch_free(batch);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}