convert_llama.go 4.81 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
package convert

import (
	"cmp"
	"fmt"
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/llm"
)

type llama struct {
	Parameters
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	NLayer                uint32  `json:"n_layer"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	NCtx                  uint32  `json:"n_ctx"`
	HiddenSize            uint32  `json:"hidden_size"`
	NEmbd                 uint32  `json:"n_embd"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NInner                uint32  `json:"n_inner"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NHead                 uint32  `json:"n_head"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	RopeTheta             float32 `json:"rope_theta"`
	RopeScaling           struct {
		Type   string  `json:"type"`
		Factor float32 `json:"factor"`
	} `json:"rope_scaling"`
	RMSNormEPS       float32 `json:"rms_norm_eps"`
	LayerNormEPS     float32 `json:"layer_norm_eps"`
	LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
	NormEpsilon      float32 `json:"norm_epsilon"`
	HeadDim          uint32  `json:"head_dim"`
}

var _ Converter = (*llama)(nil)

func (p *llama) KV(t *Tokenizer) llm.KV {
	kv := p.Parameters.KV(t)
	kv["general.architecture"] = "llama"
	kv["general.name"] = "llama"
	kv["llama.vocab_size"] = p.VocabSize

	kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
		kv["llama.context_length"] = contextLength
	}

	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
		kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
	}

	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
		kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
	}

	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
		kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
		kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
	}

	if p.RopeTheta > 0 {
		kv["llama.rope.freq_base"] = p.RopeTheta
	}

	if p.RopeScaling.Type == "linear" {
		kv["llama.rope.scaling.type"] = p.RopeScaling.Type
		kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
	}

	if p.NumKeyValueHeads > 0 {
		kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
	}

	if p.RMSNormEPS > 0 {
		kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
		kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	if p.HeadDim > 0 {
		kv["llama.attention.key_length"] = p.HeadDim
		kv["llama.attention.value_length"] = p.HeadDim
	}

	if len(t.Merges) > 0 {
		kv["tokenizer.ggml.merges"] = t.Merges
	}

	return kv
}

func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
	var out []llm.Tensor
	for _, t := range ts {
		name := p.tensorName(t.Name())
		if strings.HasSuffix(name, "attn_q.weight") ||
			strings.HasSuffix(name, "attn_k.weight") {
			t.SetRepacker(p.repack)
		}

		out = append(out, llm.Tensor{
			Name:     name,
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

func (p *llama) tensorName(n string) string {
	return strings.NewReplacer(
		"lm_head", "output",
		"model.embed_tokens", "token_embd",
		"model.norm", "output_norm",
		"model.layers", "blk",
		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"mlp.gate_proj", "ffn_gate",
		"mlp.down_proj", "ffn_down",
		"mlp.up_proj", "ffn_up",
		"post_attention_layernorm", "ffn_norm",
		// mixtral
		"block_sparse_moe.gate", "ffn_gate_inp",
	).Replace(n)
}

func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
	var dims []int
	for _, dim := range shape {
		dims = append(dims, int(dim))
	}

	var heads uint32
	if strings.HasSuffix(name, "q_proj.weight") {
		heads = p.NumAttentionHeads
	} else if strings.HasSuffix(name, "k_proj.weight") {
		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
	} else {
		return nil, fmt.Errorf("unknown tensor for repack: %s", name)
	}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}